1 |
CASALINI E , FAGIR J , HENKE D . Moving target refocusing with the FMCW SAR system MIRANDA-35[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, (14): 1283- 1291.
|
2 |
CHEN Q , CUI W , SUN J Q , et al. An improved range Doppler algorithm based on squint FMCW SAR imaging[J]. Intelligent Automation and Soft Computing, 2021, 27 (1): 115- 126.
doi: 10.32604/iasc.2021.011617
|
3 |
GHOSH A, CHAKRAVARTY D. Non-linearity compensation algorithm for FMCW SAR[C]//Proc. of the International Symposium on Antennas & Propagation, 2020: 75-78.
|
4 |
LIU K, YU W D. Interrupted FMCW SAR Imaging via sparse reconstruction[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2020: 1564-1567.
|
5 |
LIU K , YU W D , LV J Y . Azimuth Interrupted FMCW SAR for high-resolution imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2022, (19): 4001005.
|
6 |
WANG H , CHEN X , SUN J Z . FMCW SAR imaging algorithm of sliding spotlight mode[J]. IEEE Geoscience and Remote Sensing Letters, 2022, (19): 4020205.
|
7 |
GUO S C, DONG X C. Modified Omega-K algorithm for ground-based FMCW SAR imaging[C]//Proc. of the International Conference on Signal Processing, 2016: 1647-1650.
|
8 |
SCHORLEMER J , SCHULZ C , POHL N , et al. Compensation of sensor movements in short-range FMCW synthetic aperture radar algorithms[J]. IEEE Trans.on Microwave Theory and Techniques, 2021, 11 (69): 5145- 5159.
|
9 |
WANG B, HU Z Y, GUAN W S, et al. Study on the echo signal model and R-D imaging algorithm for FMCW SAR[C]//Proc. of the IET International Radar Conference, 2015. DOI: 10.1049/cp.2015.1244.
|
10 |
WANG Z Q, LI Y J, SHAO S, et al. Improved range doppler algorithm based on squint FMCW-SAR[C]//Proc. of the International Conference on Signal Processing and Communication Systems, 2018.
|
11 |
LIU Y , DENG Y K , WANG R , et al. Bistatic FMCW SAR signal model and imaging approach[J]. IEEE Trans.on Aerospace and Electronic Systems, 2013, 3 (49): 2017- 2028.
|
12 |
LIU Y , DENG Y K , WANG R . Focus squint FMCW SAR data using inverse Chirp-Z transform based on an analytical point target reference spectrum[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 5 (9): 866- 870.
|
13 |
JIA G W , BUCHROITHNER M , CHANG W G , et al. Simplified real-time imaging flow for high-resolution FMCW SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 5 (12): 973- 977.
|
14 |
BI H , ZHU D Y , BI G A , et al. FMCW SAR sparse imaging based on approximated observation: an overview on current technologies[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, (13): 4825- 4835.
|
15 |
BI H , ZHANG J J , WANG P , et al. Airborne FMCW SAR sparse data processing via frequency-scaling algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 7 (18): 1224- 1228.
|
16 |
BI H , WANG J J , BI G A . Wavenumber domain algorithm-based FMCW SAR sparse imaging[J]. Transactions on Geoscience and Remote Sensing, 2019, 10 (57): 7466- 7475.
|
17 |
JING X, GUO Y R. Design of spotlight SAR imaging system based on multicore DSP[C]//Proc. of the Asia-Pacific Confe-rence on Synthetic Aperture Radar, 2019.
|
18 |
DONG L, MENG X W, ZHU D Y. High-squint SAR imaging technique based on multi-Chip DSP[C]//Proc. of the Asia-Pacific Conference on Synthetic Aperture Radar, 2021.
|
19 |
MENG X W, ZHU D Y, DONG L. Real-time imaging processor for highly squinted airborne SAR based on multicore DSP[C]// Proc. of the International Applied Computational Electromagnetics Society Symposium, 2021.
|
20 |
孟星伟, 董兰, 朱岱寅. 大斜视机载SAR多核DSP实时成像处理架构[J]. 现代雷达, 2021, 43 (12): 7- 14.
|
|
MENG X W , DONG L , ZHU D Y . Highly squinted airborne SAR real-time imaging processing architecture based on multi-core DSP[J]. Modern Radar, 2021, 43 (12): 7- 14.
|
21 |
YU W Y, XIE Y Z, LU D, et al. Algorithm implementation of on-board SAR imaging on FPGA+DSP platform[C]//Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019.
|
22 |
ZHANG N Y, YAO D, LI C X, et al. A real-time processing system for airborne forward-squint SAR based on DSP[C]//Proc. of the IET International Radar Conference, 2015.
|
23 |
SEMENOVA K. Real-time algorithm for the front-side-looking SAR[C]//Proc. of the International Radar Symposium, 2016.
|
24 |
YE J, HU S Q, ZHAO J Y, et al. Virtual single-node processing for SAR imaging based on multi-DSP[C]//Proc. of the IEEE International Conference on Signal Processing Communications and Computing, 2016.
|
25 |
徐贶, 孙清洋, 舒汀, 等. 基于多核DSP的星载SAR干扰信号生成算法优化[J]. 现代雷达, 2018, 40 (11): 27-30, 36.
|
|
XU K , SUN Q Y , SHU T , et al. Real-time generation algorithm optimization method of deceptive jamming signal for space-borne SAR based on multicore DSP[J]. Modern Radar, 2018, 40 (11): 27-30, 36.
|
26 |
CHANG W G, TIAN H S, GU C F. FMCW SAR: from design to realization[C]//Proc. of the International Geoscience and Remote Sensing Symposium, 2016: 1122-1125.
|
27 |
GU C F, CHANG W G, LI X Y, et al. A compact FMCW SAR real-time imaging system and its performance analysis[C]// Proc. of the IET International Radar Conference, 2015.
|
28 |
YANG Z J, NIE X F, XIONG W Y, et al. Real time imaging processing of ground-based SAR based on multicore DSP[C]//Proc. of the IEEE International Conference on Imaging Systems and Techniques, 2017.
|
29 |
王岩, 杨天笑, 丁泽刚, 等. 星载双基地FMCW-SAR高分辨时域成像算法[J]. 信号处理, 2022, 38 (1): 35- 42.
|
|
WANG Y , YANG T X , DING Z G , et al. High resolution time domain imaging algorithm for spaceborne bistatic FMCW-SAR[J]. Journal of Signal Processing, 2022, 38 (1): 35- 42.
|
30 |
梁毅, 王虹现, 邢孟道, 等. 同航线双基调频连续波SAR改进距离徙动算法[J]. 西安电子科技大学学报, 2011, 38 (1): 71-79, 84.
|
|
LIANG Y , WANG H X , XING M D , et al. Modified RMA for the tandem bistatic FMCW SAR with frequency non-linearity correction[J]. Journal of Xidian University, 2011, 38 (1): 71-79, 84.
|