Systems Engineering and Electronics ›› 2023, Vol. 46 ›› Issue (1): 105-112.doi: 10.12305/j.issn.1001-506X.2024.01.12
• Sensors and Signal Processing • Previous Articles
Guangjia HUANG, Xu CHENG, Bin RAO, Wei WANG
Received:
2022-09-20
Online:
2023-12-28
Published:
2024-01-11
Contact:
Xu CHENG
CLC Number:
Guangjia HUANG, Xu CHENG, Bin RAO, Wei WANG. One/multi-bit MIMO radar detection of a moving target based on generalized Rao test[J]. Systems Engineering and Electronics, 2023, 46(1): 105-112.
Table 1
Optimized quantization threshold by PSOA"
量化位数q | 量化门限向量τk |
q=1 | [-∞, 0, +∞] |
q=2 | [-∞, -0.981 6, 0, 0.981 6, +∞] |
q=3 | [-∞, -1.747 9, -1.05, -0.500 6, 0, 0.500 5, 1.05, 1.747 9, +∞] |
q=4 | [-∞, -2.400 8, -1.843 5, -1.71, -1.099 3, -0.799 5, -0.522 4, -0.258 2, 0, 0.258 2, 0.522 4, 0.799 6, 1.099 3, 1.437 1, 1.843 5, 2.400 8, +∞] |
11 |
WU C Y , ZHANG T Y , LI J , et al. Parameter estimation in PMCW MIMO radar systems with few-bit quantized observations[J]. IEEE Trans.on Signal Processing, 2022, 70, 810- 821.
doi: 10.1109/TSP.2022.3146790 |
12 | YI C B, ZHAO B, HUANG L, et al. Promotion from 1-bit quantization model to multi-bit in SAR imaging[C]//Proc. of the IEEE 6th Asia-Pacific Conference on Synthetic Aperture Radar, 2019. DOI: 10.1109/APSAR46974.2019.9048415. |
13 | KAY S M. Fundamentals of statistical processing, volume 2: detection theory[M]. Pearson Education India, 2009. |
14 |
CIUONZO D , PAPA G , ROMANO G , et al. One-bit decentralized detection with a Rao test for multisensor fusion[J]. IEEE Signal Processing Letters, 2013, 20 (9): 861- 864.
doi: 10.1109/LSP.2013.2271847 |
15 | CHENG X , CIUONZO D , ROSSI P S . Multibit decentralized detection through fusing smart and dumb sensors based on Rao test[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 56 (2): 1391- 1405. |
16 |
CIUONZO D , ROSSI P S , WILLETT P . Generalized Rao test for decentralized detection of an uncooperative target[J]. IEEE Signal Processing Letters, 2017, 24 (5): 678- 682.
doi: 10.1109/LSP.2017.2686377 |
17 |
CHENG X , CIUONZO D , ROSSI P S , et al. Multi-bit & sequential decentralized detection of a noncooperative moving target through a generalized Rao test[J]. IEEE Trans.on Signal and Information Processing over Networks, 2021, 7, 740- 753.
doi: 10.1109/TSIPN.2021.3126930 |
18 |
CIUONZO D , ROSSI P S , VARSHNEY P K . Distributed detection in wireless sensor networks under multiplicative fading via generalized score tests[J]. IEEE Internet of Things Journal, 2021, 8 (11): 9059- 9071.
doi: 10.1109/JIOT.2021.3056325 |
19 |
LIU W J , WANG Y L , LIU J , et al. Adaptive detection without training data in colocated MIMO radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 2015, 51 (3): 2469- 2479.
doi: 10.1109/TAES.2015.130754 |
20 |
XIAO Y H , RAMIREZ D , SCHREIER P J , et al. One-bit target detection in collocated MIMO radar and performance degradation analysis[J]. IEEE Trans.on Vehicular Technology, 2022, 71 (9): 9363- 9374.
doi: 10.1109/TVT.2022.3178285 |
21 | XIAO H, YANG S X, YI W. Weak target detection with multi-bit quantization in colocated MIMO radar[C]//Proc. of the IEEE 24th International Conference on Information Fusion, 2021. DOI: 10.1109/MHS.1995.494215. |
1 | BLISS D W, FORSYTHE K W. Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution[C]// Proc. of the IEEE 37th Asilomar Conference on Signals, Systems & Computers, 2003: 54-59. |
2 | 张国鑫, 易伟, 孔令讲. 基于1比特量化的大规模MIMO雷达系统直接定位算法[J]. 雷达学报, 2021, 10 (6): 970- 981. |
ZHANG G X , YI W , KONG L J . Direct position determination for massive MIMO system with one-bit quantization[J]. Journal of Radars, 2021, 10 (6): 970- 981. | |
3 | LI J, STOICA P. MIMO radar signal processing[M]. New Jersey Wiley, 2008. |
4 |
XI F , XIANG Y J , CHEN S Y , et al. Gridless parameter estimation for one-bit MIMO radar with time-varying thresholds[J]. IEEE Trans.on Signal Processing, 2020, 68, 1048- 1063.
doi: 10.1109/TSP.2020.2970343 |
5 |
XI F , XIANG Y J , ZHANG Z , et al. Joint angle and Doppler frequency estimation for MIMO radar with one-bit sampling: a maximum likelihood-based method[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (6): 4734- 4748.
doi: 10.1109/TAES.2020.3000841 |
6 |
DENG M L , CHENG Z Y , WU L L , et al. One-bit ADCs/DACs based MIMO radar: performance analysis and joint design[J]. IEEE Trans.on Signal Processing, 2022, 70, 2609- 2624.
doi: 10.1109/TSP.2022.3176953 |
7 |
JIN B Z , ZHU J , WU Q , et al. One-bit LFMCW radar: spectrum analysis and target detection[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (4): 2732- 2750.
doi: 10.1109/TAES.2020.2978374 |
8 |
AMERI A , BOSE A , LI J , et al. One-bit radar processing with time-varying sampling thresholds[J]. IEEE Trans.on Signal Processing, 2019, 67 (20): 5297- 5308.
doi: 10.1109/TSP.2019.2939086 |
9 | AMERI A, SOLTANALIAN M. One-bit radar processing for moving target detection[C]//Proc. of the IEEE Radar Confe-rence, 2019. DOI: 10.1109/RADAR.2019.8835550. |
10 |
CHENG Z Y , HE Z S , LIAO B . Target detection performance of collocated MIMO radar with one-bit ADCs[J]. IEEE Signal Processing Letters, 2019, 26 (12): 1832- 1836.
doi: 10.1109/LSP.2019.2951496 |
22 | EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proc. of the IEEE 6th International Symposium on Micro Machine and Human Science, 1995: 39-43. |
23 | CUI G L , LI H B , RANGASWAMY M . MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Trans.on Signal Processing, 2013, 62 (2): 343- 353. |
24 | CUI G L , YU X X , CAROTENUTO V , et al. Space-time transmit code and receive filter design for colocated MIMO radar[J]. IEEE Trans.on Signal Processing, 2016, 65 (5): 1116- 1129. |
25 | RAO C R. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation[C]//Proc. of Mathematical Proceedings of the Cambridge Philosophical Society Cambridge University Press, 1948, 44(1): 50-57. |
26 | DAVIES R B . Hypothesis testing when a nuisance parameter is present only under the alternative[J]. Biometrika, 1987, 74 (1): 33- 43. |
27 |
KIRKPATRICK S , GELATT JR C D , VECCHI M P . Optimization by simulated annealing[J]. Science, 1983, 220 (4598): 671- 680.
doi: 10.1126/science.220.4598.671 |
28 |
HOLLAND J H . Genetic algorithms[J]. Scientific American, 1992, 267 (1): 66- 73.
doi: 10.1038/scientificamerican0792-66 |
29 |
POLYAK B T . The conjugate gradient method in extremal problems[J]. USSR Computational Mathematics and Mathematical Physics, 1969, 9 (4): 94- 112.
doi: 10.1016/0041-5553(69)90035-4 |
30 | GAO F , GUO L L , LI H B , et al. Quantizer design for distri-buted GLRT detection of weak signal in wireless sensor networks[J]. IEEE Trans.on Wireless Communications, 2014, 14 (4): 2032- 2042. |
[1] | Yuhang HAO, Wei JIANG, Zengfu WANG, Hua LAN, Ting YONG, Quan PAN. Distributed MIMO sky-wave over-the-horizon-radar simulation system [J]. Systems Engineering and Electronics, 2023, 45(7): 1981-1989. |
[2] | Qian CHENG, Jia LI, Juan DU. Ship target detection algorithm of optical remote sensing image based on YOLOv5 [J]. Systems Engineering and Electronics, 2023, 45(5): 1270-1276. |
[3] | Jingjing ZHU, Shengqi ZHU, Guisheng LIAO, Jingwei XU, Lan LAN, Cao ZENG. Joint target detection based on phased array and frequency diverse array dual-mode radar [J]. Systems Engineering and Electronics, 2023, 45(5): 1342-1350. |
[4] | Yuchao YANG, Ming FANG, Chenfan ZHAO, Gang FANG. Long-time coherent integration algorithm for high-speed maneuvering targets [J]. Systems Engineering and Electronics, 2023, 45(5): 1359-1370. |
[5] | Dongdong ZHANG, Chunping WANG, Qiang FU. Ship target detection in SAR image based on feature-enhanced network [J]. Systems Engineering and Electronics, 2023, 45(4): 1032-1039. |
[6] | Ziqiang MENG, Wei GAO, Xiaoming LI. Two-dimensional ground stationary target detection algorithm for airborne radar [J]. Systems Engineering and Electronics, 2023, 45(4): 1040-1048. |
[7] | Yunpu ZHANG, Ganlin SHAN, Yan HUANG, Qiang FU. Multiple mobile sensors scheduling method for ground target detection and tracking considering blind zone [J]. Systems Engineering and Electronics, 2023, 45(2): 453-464. |
[8] | Zhuzhen HE, Min LI, Yao GOU, Aitao YANG. Ship target detection method for synthetic aperture radar images based on improved YOLOv5 [J]. Systems Engineering and Electronics, 2023, 45(12): 3743-3753. |
[9] | Zhihui LI, Bo TANG, Qingsong ZHOU, Junpeng SHI, Jianyun ZHANG. Overview of waveform design methods for new system airborne radar [J]. Systems Engineering and Electronics, 2023, 45(12): 3852-3865. |
[10] | Hongfei LIAN, Jiamin LONG, Xueyao HU, Yanwen JIANG, Dongsheng LI, Hongqi FAN. Multi domain joint modulation waveform for automotive radar [J]. Systems Engineering and Electronics, 2023, 45(11): 3402-3410. |
[11] | Jianxiong ZHOU, Yongfeng ZHU, Ji CHEN, Hongming WU, Kun WU, Yongjie ZHANG. HRRP detection and recognition of radar targets based on assistant SAR images [J]. Systems Engineering and Electronics, 2023, 45(11): 3428-3436. |
[12] | Jun LIU, Ning CUI, Jiaxin XIE, Kun XING. Airborne radar air-to-air RF stealth detection parameter design based on NSGA-Ⅲ [J]. Systems Engineering and Electronics, 2023, 46(1): 97-104. |
[13] | Yu XIAO, Zhenghong DENG, Zhan ZHANG. Waveform design based on two-stage mutual information for multi-target detection [J]. Systems Engineering and Electronics, 2022, 44(9): 2736-2742. |
[14] | Xiang LIU, Tianyao HUANG, Yimin LIU. Distributed target detection for frequency agile radars [J]. Systems Engineering and Electronics, 2022, 44(6): 1833-1838. |
[15] | Xiaofeng ZHAO, Yebin XU, Fei WU, Jiahui NIU, Wei CAI, Zhili ZHANG. Ground infrared target detection method based on global sensing mechanism [J]. Systems Engineering and Electronics, 2022, 44(5): 1461-1467. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||