Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (12): 3743-3753.doi: 10.12305/j.issn.1001-506X.2023.12.04
• Electronic Technology • Previous Articles
Zhuzhen HE1,2, Min LI1,*, Yao GOU1, Aitao YANG1
Received:
2022-10-28
Online:
2023-11-25
Published:
2023-12-05
Contact:
Min LI
CLC Number:
Zhuzhen HE, Min LI, Yao GOU, Aitao YANG. Ship target detection method for synthetic aperture radar images based on improved YOLOv5[J]. Systems Engineering and Electronics, 2023, 45(12): 3743-3753.
Table 4
Accuracy of the detection algorithm on SSDD dataset"
检测算法 | mAP | FPS | FLOPs/G | Para/M | Weights/M |
Faster-RCNN ResNet+FPN | 83.7 | 16.7 | 134.5 | 41.4 | 330.3 |
RetinaNet | 92.1 | 23.4 | 127 | 53.1 | 257.1 |
SSD | 86.0 | 41.0 | 15.0 | 13.1 | 105.1 |
YOLOv3 | 96.1 | 36.9 | 155.3 | 61.5 | 123.6 |
YOLOv5s | 94.8 | 143 | 16.5 | 7.0 | 13.7 |
本文算法 | 96.7 | 127 | 16.6 | 7.2 | 14.1 |
Table 6
Comparison of performance parameters between YOLOv5s and the improved algorithm"
检测算法 | SE | CBAM | CA | CIOU | SIOU | EIOU | REIOU | BiFPN | Precision | Recall | mAP | FPS | Para |
YOLOv5s | — | — | — | √ | — | — | — | — | 93.5 | 88.8 | 94.8 | 143 | 7 022 326 |
改进算法1 | √ | — | — | — | √ | — | — | √ | 93.1 | 89.0 | 95.0 | 132 | 7 203 711 |
改进算法2 | — | √ | — | — | √ | — | — | √ | 93.3 | 88.9 | 95.1 | 130 | 7 203 809 |
改进算法3 | — | — | √ | — | √ | — | — | √ | 94.1 | 88.6 | 96.0 | 130 | 7 196 591 |
改进算法4 | √ | — | — | — | — | √ | — | √ | 92.5 | 90.8 | 95.1 | 133 | 7 203 711 |
改进算法5 | — | √ | — | — | — | √ | — | √ | 92.4 | 91.0 | 95.2 | 126 | 7 203 809 |
改进算法6 | — | — | √ | — | — | √ | — | √ | 93.0 | 91.3 | 96.5 | 127 | 7 196 591 |
改进算法7 | √ | — | — | — | — | √ | √ | 92.5 | 90.9 | 95.3 | 130 | 7 203 711 | |
改进算法8 | — | √ | — | — | — | — | √ | √ | 92.9 | 89.4 | 95.1 | 127 | 7 203 809 |
本文算法 | — | — | √ | — | — | — | √ | √ | 93.7 | 90.2 | 96.7 | 127 | 7 196 591 |
1 | 谌华. SAR图像目标自动检测与识别方法研究[D]. 北京: 中国科学院大学, 2019. |
ZHAN H. A study on methods of SAR image target automatic detection and recognition[D]. Beijing: University of Chinese Academy of Sciences, 2019. | |
2 | NOVAK L M , OWIRKA G J , BROWER W S , et al. The automatic target-recognition system in SAIP[J]. Lincoln Laboratory Journal, 1997, 10 (2): 187- 202. |
3 |
NOVAK L M , HALVERSEN S D , OWIRKA G , et al. Effects of polarization and resolution on SAR ATR[J]. IEEE Trans.on Aerospace and Electronic Systems, 1997, 33 (1): 102- 116.
doi: 10.1109/7.570713 |
4 | ROBERTSON N, BIRD P, BROWNSWORD C. Ship surveillance using RADARSAT ScanSAR images[C]//Proc. of the Ship Detection in Coastal Water Workshop Agenda, 2000: 41-45. |
5 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. |
6 | GIRSHICK R. Fast R-CNN[EB/OL]. [2022-8-20]. https://arxiv.org/pdf/1504.08083.pdf. |
7 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031 |
8 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multi-box detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21-37. |
9 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. |
10 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525. |
11 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2022-08-20]. https://arxiv.org/pdf/1804.02767v1.pdf. |
12 | BOCHKOVSKIV A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2022-08-20]. https://arxiv.org/abs/2004.10934. |
13 | 赵江洪, 张晓光, 杨璐. 深度学习的遥感影像舰船目标检测[J]. 测绘科学, 2020, 45 (3): 110- 116. |
ZHAO J H , ZHANG X G , YANG L . Ship detection in remote sensing based on deep learning[J]. Science of Surveying and Mapping, 2020, 45 (3): 110- 116. | |
14 | 顾佼佼, 李炳臻, 刘克. 基于改进Faster R-CNN的红外舰船目标检测算法[J]. 红外技术, 2021, 43 (2): 170- 178. |
GU J J , LI B Z , LIU K . Infrared ship target detection algorithm based on improved Faster R-CNN[J]. Infrared Technology, 2021, 43 (2): 170- 178. | |
15 | 马啸, 邵利民, 金鑫, 等. 基于改进Mask R-CNN的可见光图像中舰船目标检测方法[J]. 北京理工大学学报, 2021, 41 (7): 734- 744. |
MA X , SHAO L M , JIN X , et al. Ship target detection in optical images based improved mask R-CNN[J]. Trans.of Beijing Institute of Technology, 2021, 41 (7): 734- 744. | |
16 | 唐崇武, 刘洪喜, 代长安. 基于改进YOLOv3算法的舰船目标检测识别系统[J]. 航空电子技术, 2022, 53 (2): 39- 46. |
TANG C W , LIU H X , DAI C A . Improved YOLOv3 based ship target detection and recognition system[J]. Avionics Technology, 2022, 53 (2): 39- 46. | |
17 | 胡欣, 马丽军. 基于YOLOv5的多分支注意力SAR图像舰船检测[J]. 电子测量与仪器学报, 2022, 36 (8): 141- 149. |
HU X , MA L J . Multi-branch attention SAR image ship detection based on YOLOv5[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36 (8): 141- 149. | |
18 | 钱坤, 李晨瑄, 陈美杉. 基于YOLOv5的舰船目标及关键部位检测算法[J]. 系统工程与电子技术, 2022, 44 (6): 1823- 1832. |
QIAN K , LI C X , CHEN M S . Ship target and key parts detection algorithm based on YOLOv5[J]. Systems Engineering and Electronics, 2022, 44 (6): 1823- 1832. | |
19 | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768. |
20 | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936-944. |
21 | ZHENG Z H , WANG P , REN D W , et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Trans.on Cybernetics, 2022, 52 (8): 8574- 8586. |
22 | REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 658-666. |
23 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722. |
24 | TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790. |
25 | ZHANG Y F , REN W , ZHANG Z , et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506 (9): 146- 157. |
26 | LI J W, QU C W, SHAO J Q. Ship detection in SAR images based on an improved faster R-CNN[C]//Proc. of the SAR in Big Data Era: Models, Methods and Applications, 2017: 1-6. |
27 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
28 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988. |
29 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. |
30 | WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19. |
31 | GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. [2022-08-28] https://arxiv.org/ftp/arxiv/papers/2205/2205.12740.pdf. |
[1] | Xiaofeng ZHAO, Jiahui NIU, Chuntong LIU, Yuting XIA. Hyperspectral image classification based on hybrid convolution with three-dimensional attention mechanism [J]. Systems Engineering and Electronics, 2023, 45(9): 2673-2680. |
[2] | Mingqian LIU, Zhongqiu XU, Tiancheng CHEN, Bingchen ZHANG, Yirong WU. Low oversampling Staggered SAR imaging method based on L1 & TV regularization [J]. Systems Engineering and Electronics, 2023, 45(9): 2718-2726. |
[3] | Zhongbao WANG, Kuiying YIN. Block effect suppression method of UAV-borne SAR image based on joint domain filtering [J]. Systems Engineering and Electronics, 2023, 45(9): 2768-2776. |
[4] | Haijun LI, Fancheng KONG, Yun LIN. Infrared ship detection algorithm based on improved YOLOv5s [J]. Systems Engineering and Electronics, 2023, 45(8): 2415-2422. |
[5] | Peng KOU, Yongxiang LIU, Chi ZHANG, Weijie LI, Shuanghui ZHANG, Kai HUO. Attitude estimation of spacecraft in orbit with complex structure based on sequential ISAR images [J]. Systems Engineering and Electronics, 2023, 45(8): 2438-2445. |
[6] | Ning WANG, Pengchao HE, Jingyue LU, Xi LIU. DOA estimation based imaging method for multi-channel forward-looking SAR [J]. Systems Engineering and Electronics, 2023, 45(8): 2471-2478. |
[7] | Pengfei WANG, Hengyi ZHAN, Hongzhong SUN. Two-dimensional spatial-variant compensation frequency domain imaging method for bistatic forward-looking radar [J]. Systems Engineering and Electronics, 2023, 45(7): 1990-2001. |
[8] | Hanshen ZHU, Wenhua HU, Baofeng GUO, Liting JIAO, Xiaoxiu ZHU, Chang'an ZHU. Bistatic ISAR sparse aperture maneuvering target MTRC compensation imaging algorithm [J]. Systems Engineering and Electronics, 2023, 45(7): 2022-2030. |
[9] | Zhe DENG, Jing LEI, Chengzhe SUN. Semi-supervised interference cancellation method for frequency hopping signal blind detection [J]. Systems Engineering and Electronics, 2023, 45(7): 2236-2248. |
[10] | Junpeng WANG, Shiqi XING, Yongzhen LI, Datong HUANG, Shaoqiu SONG. FMCW SAR jamming method research based on time-frequency cross [J]. Systems Engineering and Electronics, 2023, 45(6): 1651-1657. |
[11] | Qian CHENG, Jia LI, Juan DU. Ship target detection algorithm of optical remote sensing image based on YOLOv5 [J]. Systems Engineering and Electronics, 2023, 45(5): 1270-1276. |
[12] | Jingjing ZHU, Shengqi ZHU, Guisheng LIAO, Jingwei XU, Lan LAN, Cao ZENG. Joint target detection based on phased array and frequency diverse array dual-mode radar [J]. Systems Engineering and Electronics, 2023, 45(5): 1342-1350. |
[13] | Yuchao YANG, Ming FANG, Chenfan ZHAO, Gang FANG. Long-time coherent integration algorithm for high-speed maneuvering targets [J]. Systems Engineering and Electronics, 2023, 45(5): 1359-1370. |
[14] | Lei YANG, Yabo XIA, Xianhua LIAO, Xinyao MAO, Yuchen DOU, Huan YANG. Super-resolution ISAR imagery algorithm based on bi-sparsity Bayesian learning [J]. Systems Engineering and Electronics, 2023, 45(5): 1371-1379. |
[15] | Qihua WU, Feng ZHAO, Junjie WANG, Zhiming XU, Shunping XIAO. ISAR image feature control method based on phase coded modulation [J]. Systems Engineering and Electronics, 2023, 45(4): 1000-1007. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||