1 |
DONG Z , LIN B J . Learning a robust CNN-based rotation insensitive model for ship detection in VHR remote sensing ima-ges[J]. International Journal of Remote Sensing, 2020, 41 (9): 3614- 3626.
doi: 10.1080/01431161.2019.1706781
|
2 |
ZHU C R , ZHOU H , WANG R S , et al. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J]. IEEE Trans.on Geoscience and Remote Sensing, 2010, 48 (9): 3446- 3456.
doi: 10.1109/TGRS.2010.2046330
|
3 |
董超. 可见光遥感图像海面舰船目标检测技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2020.
|
|
DONG C. Research on the detection of ship targets on the sea surface in optical remote sensing image[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020.
|
4 |
王保云, 张荣, 袁圆, 等. 可见光遥感图像中舰船目标检测的多阶阈值分割方法[J]. 中国科学技术大学学报, 2011, 41 (4): 293- 298.
|
|
WANG B Y , ZHANG R , YUAN Y , et al. A new multi-level threshold segmentation method for ship targets detection in optical remote sensing images[J]. Journal of University of Science and Technology of China, 2011, 41 (4): 293- 298.
|
5 |
GAN L, LIU P, WANG L Z. Rotation sliding window of the HOG feature in remote sensing images for ship detection[C]//Proc. of the International Symposium on Computational Intelligence and Design, 2015: 401-404.
|
6 |
TAYARA H , CHONG K T . Object detection in very high-resolution aerial images using one-stage densely connected feature pyramid network[J]. Sensors, 2018, 18 (10): 3341.
doi: 10.3390/s18103341
|
7 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Computer Society Conference on Computer Vision & Pattern Recognition, 2014: 580-587.
|
8 |
GIRSHICK R. Fast R-CNN[C]//Proc. of the IEEE Computer Society Conference on Computer Vision & Pattern Recognition, 2015: 1440-1448.
|
9 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
10 |
HE K M , GKIOXARI G , DOLLAR P , et al. Mask R-CNN[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 386- 397.
doi: 10.1109/TPAMI.2018.2844175
|
11 |
HE K M , ZHANG X Y , REN S Q , et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916.
doi: 10.1109/TPAMI.2015.2389824
|
12 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
13 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
|
14 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2021-11-21]. http://arxiv.org/abs/1804.02767.
|
15 |
BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2021-11-21]. https://arxiv.org/abs/2004.10934.
|
16 |
JOCHER G, STOKEN A, CHAURASIA A, et al. YOLOv5[EB/OL]. [2021-11-21]. http://github.com/ultralytics/yolov5.
|
17 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[M]//LEIBE B, MATAS J, SEBE N, et al. Lecture Notes in Computer Science, 2016.
|
18 |
FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2021-11-21]. https://arxiv.org/abs/1701.06659.
|
19 |
XIAO D , SHAN F , LI Z , et al. A target detection model based on improved tiny-YOLOv3 under the environment of mining truck[J]. IEEE Access, 2019, 7, 123757- 123764.
doi: 10.1109/ACCESS.2019.2928603
|
20 |
徐诚极, 王晓峰, 杨亚东. Attention-YOLO: 引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55 (6): 13- 23.
|
|
XU C J , WANG X F , YANG Y D . Attention-YOLO: YOLO detection algorithm that introduces attention mechanism[J]. Compu-ter Engineering and Applications, 2019, 55 (6): 13- 23.
|
21 |
郭进祥, 刘立波, 徐峰, 等. 基于YOLOv3的机场场面飞机检测方法[J]. 激光与光电子学进展, 2019, 56 (19): 111- 119.
|
|
GUO J X , LIU L B , XU F , et al. Airport scene aircraft detection method based on YOLOv3[J]. Laser & Optoelectronics Progress, 2019, 56 (19): 111- 119.
|
22 |
GE Z, LIU S T, WANG F, et al. YOLOX: exceeding yolo series in 2021[EB/OL]. [2022-5-1]. http://arxiv.org/abs/2107.08430.
|
23 |
ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9756-9765.
|
24 |
WANG C Y, MARKLIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
|
25 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759-8769.
|
26 |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS-improving object detection with one line of code[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 5561-5569.
|
27 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936-944.
|
28 |
PRAJIT R, BARRET Z, QUOC V, et al. Swish: a self-gated activation function[EB/OL]. [2021-11-21]. https://arxiv.org/abs/1710.05941v1.
|
29 |
KAGGLE. Dataset for airbus ship detection challenge[EB/OL]. [2021-11-21]. https://www.kaggle.com/c/airbus-ship-detection/data, 2018.
|
30 |
CHATTOPADHYAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++: improved visual explanations for deep convolutional networks[C]//Proc. of the IEEE Winter Conference on Applications of Computer Vision, 2018: 839-847.
|