1 |
LIU X L , LIANG M Q , MORTON Y , et al. Performance evaluation of MSK and OFDM modulations for future GNSS signals[J]. GPS Solutions, 2014, 18 (2): 163- 175.
doi: 10.1007/s10291-014-0368-6
|
2 |
AN K, YAN X J, LIANG T, et al. NOMA based satellite communication networks: architectures, techniques and challenges[C]//Proc. of the IEEE 19th International Conference on Communication Technology, 2019: 1105-1110.
|
3 |
YIN Z S , JIA M , WANG W , et al. Secrecy rate analysis of satellite communications with frequency domain NOMA[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (12): 11847- 11858.
doi: 10.1109/TVT.2019.2944875
|
4 |
SUN Y B . Optimal parameter design of continuous phase modulation for future GNSS signals[J]. IEEE Access, 2021, 9, 58487- 58502.
doi: 10.1109/ACCESS.2021.3073317
|
5 |
GAO Z X , LIU A J , HAN C , et al. Sum rate maximization of massive MIMO NOMA in LEO satellite communication system[J]. IEEE Wireless Communication Letters, 2021, 10 (8): 1667- 1671.
doi: 10.1109/LWC.2021.3076579
|
6 |
FERRE G, LAPORTE-FAURET B, TEMIM M A B. A downlink non orthogonal multiple access for chirp spread spectrum communications[C]//Proc. of the IEEE Latin-American Confe-rence on Communications, 2020.
|
7 |
SU C G , GUO S R , ZHOU H W . A substitute for BOC modulation based on SS-CPM[J]. Advances in Space Research, 2013, 51 (6): 942- 950.
doi: 10.1016/j.asr.2012.06.012
|
8 |
MAO W L , CHEN A B . New code delay compensation algorithm for weak GPS signal acquisition[J]. AEU-International Journal of Electronics and Communications, 2009, 63 (8): 665- 677.
|
9 |
SUN J H, LV S S. A general overlapping multi block zero padding algorithm for weak signal acquisition[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2017.
|
10 |
CUI S L, WANG D C, HOLTKAMP B, et al. A multi-frequency acquisition algorithm for a GNSS software receiver[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 1082-1085.
|
11 |
LU K, CONG Y C, FANG J H, et al. A joint code-Doppler acquisition algorithm for DSSS-MSK based on FFT[C]//Proc. of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference, 2020: 1118-1123.
|
12 |
LI R T, LI S L, LIU G. Research and implementation of GPS pseudo-code fast acquisition based on matched filter and FFT[C]//Proc. of the IEEE CSAA Guidance, Navigation and Control Conference, 2018.
|
13 |
PAN Y , ZHANG T Q , ZHANG G , et al. A novel acquisition algorithm based on PMF-apFFT for BOC modulated signals[J]. IEEE Access, 2019, 7, 46686- 46694.
doi: 10.1109/ACCESS.2019.2909787
|
14 |
LU Y S. A fast GPS signal acquisition method based on fuzzy logic[C]//Proc. of the IEEE 3rd International Conference on Electronics and Communication Engineering, 2020: 89-92.
|
15 |
FINE P, WILSON W. Tracking algorithm for GPS offset carrier signals[C]//Proc. of the National Technical Meeting of the Institute of Navigation, 1999: 671-676.
|
16 |
YAN S L, DONG L, ZHANG Y G. Joint data/pilot tracking techniques for the modern Beidou B1C signal[C]//Proc. of the IEEE 4th International Conference on Computer and Communications, 2018: 1331-1335.
|
17 |
EMMANUELE A , ZANIER F , BOCCOLINI G , et al. Spread-spectrum continuous-phase-modulated signals for satellite navigation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2012, 48 (4): 3234- 3249.
doi: 10.1109/TAES.2012.6324699
|
18 |
OTHMAN R, LOUET Y, SKRZYPCZAK A. Joint channel estimation and detection of SOQPSK using the PAM decomposition[C]//Proc. of the IEEE 25th International Conference on Telecommunications, 2018: 154-158.
|