1 |
孙国鑫, 夏群利, 张道驰, 等. 可重复使用运载器自动着陆分段制导策略[J]. 系统工程与电子技术, 2019, 41 (4): 856- 862.
|
|
SUN G X , XIA Q L , ZHANG D C , et al. Piecewise guidance strategy of auto-landing for reusable launch vehicle[J]. Systems Engineering and Electronics, 2019, 41 (4): 856- 862.
|
2 |
王开强, 张柏楠. 商业载人亚轨道飞行器发展现状与趋势分析[J]. 航天器工程, 2020, 29 (1): 70- 80.
doi: 10.3969/j.issn.1673-8748.2020.01.011
|
|
WANG K Q , ZHANG B N . Analysis on development status and tendency of commercial manned suborbital vehicle[J]. Spacecraft Engineering, 2020, 29 (1): 70- 80.
doi: 10.3969/j.issn.1673-8748.2020.01.011
|
3 |
ZAHARI A R , ROMLI F I . Analysis of suborbital flight operation using PESTLE[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 192, 104901.
doi: 10.1016/j.jastp.2018.08.006
|
4 |
FITZGERALD P . Inner space: ICAO's new frontier[J]. Journal of Air Law and Commerce, 2014, 78 (4): 3- 34.
|
5 |
HILTON S , SABATINI R , GARDI A , et al. Space traffic ma-nagement: towards safe and unsegregated space transport operations[J]. Progress in Aerospace Sciences, 2019, 105, 98- 125.
doi: 10.1016/j.paerosci.2018.10.006
|
6 |
YOUNG J E , KEE M G E , YOUNG C M . Effects of future launch and reentry operations on the national airspace system[J]. Journal of Air Transportation, 2017, 25 (1): 8- 16.
doi: 10.2514/1.D0039
|
7 |
BRAUN V , HORSTMANN A , REIHS B , et al. Exploiting orbital data and observation campaigns to improve space debris models[J]. The Journal of the Astronautical Sciences, 2019, 66 (2): 192- 209.
doi: 10.1007/s40295-019-00155-6
|
8 |
MARK C P , KAMATH S . Review of active space debris removal methods[J]. Space Policy, 2019, 47, 194- 206.
doi: 10.1016/j.spacepol.2018.12.005
|
9 |
BONNAL C , MCKNIGHT D , PHIPPS C , et al. Just in time collision avoidance-a review[J]. Acta Astronautica, 2020, 170, 637- 651.
doi: 10.1016/j.actaastro.2020.02.016
|
10 |
张育林, 张斌斌, 王兆魁. 空间碎片环境的长期演化建模方法[J]. 宇航学报, 2018, 39 (12): 1408- 1418.
doi: 10.3873/j.issn.1000-1328.2018.12.012
|
|
ZHANG Y L , ZHANG B B , WANG Z K . Methods for space debris environment long-term evolution modeling[J]. Journal of Astronautics, 2018, 39 (12): 1408- 1418.
doi: 10.3873/j.issn.1000-1328.2018.12.012
|
11 |
LAZARE B , ARNAL M H , AUSSILHOU C , et al. ELECTRA○C launch and re-entry safety analysis tool[J]. Making Safety Matter, 2010, 680, 46.
|
12 |
DOLAN N, CHEN J, JONES J C, et al. Learning-based parameter optimization to support dynamic aircraft hazard area generation for space operations[C]//Proc. of the AIAA Scitech Forum, 2021.
|
13 |
SARCONI M. A prototype system for simulating the risks of sub-orbital space flight for commercial aviation[R]. Glasgow, UK: University of Glasgow, 2013.
|
14 |
CAPRISTAN F M, ALONSO J J. Range safety assessment tool (RSAT): an analysis environment for safety assessment of launch and reentry vehicles[C]//Proc. of the 52nd Aerospace Sciences Meeting, 2014.
|
15 |
MURRAY D, MITCHELL M. Lessons learned in operational space and air traffic management[C]//Proc. of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.
|
16 |
MORLANG F , FERRAND J , SEKER R . Why a future commercial spacecraft must be able to SWIM[J]. Journal of Space Safety Engineering, 2017, 4 (1): 5- 8.
doi: 10.1016/j.jsse.2017.03.003
|
17 |
HAYS C, CHU D, LLANOS P. A statistical approach for commercial space vehicle integration into the national airspace system[C]//Proc. of the Space Traffic Management Conference, 2019.
|
18 |
LUCHKOVA T, KALTENHAEUSER S, MORLANG F. Air traffic impact analysis design for a suborbital point-to-point passenger transport concept[C]//Proc. of the 3rd Annual Space Traffic Management Conference, 2016.
|
19 |
JOHNSON C W. Using the 'Internet of Things' to support dynamic risk assessment in future concepts of operation for air traffic management[D]. Glasgow: University of Glasgow, 2015.
|
20 |
LEE D J , CHOI E J , CHO S , et al. Effective computational approach for prediction and estimation of space object breakup dispersion during uncontrolled reentry[J]. International Journal of Aerospace Engineering, 2018,
doi: 10.1155/2018/6824978
|
21 |
REYHANOGLU M , ALVARADO J . Estimation of debris dispersion due to a space vehicle breakup during reentry[J]. Acta Astronautica, 2013, 86, 211- 218.
doi: 10.1016/j.actaastro.2013.01.018
|
22 |
都延丽, 刘武, 唐明明, 等. 可重复使用运载器多约束鲁棒预测校正制导[J]. 系统工程与电子技术, 2021, 43 (5): 1316- 1325.
|
|
DU Y L , LIU W , TANG M M , et al. Robust predictor-corrector guidance with multiple constraints for reusable launch vehicles[J]. Systems Engineering and Electronics, 2021, 43 (5): 1316- 1325.
|
23 |
FALSONE A , PRANDINI M . A randomized approach to probabilistic footprint estimation of a space debris uncontrolled reentry[J]. IEEE Trans.on Intelligent Transportation Systems, 2017, 18 (10): 2657- 2666.
doi: 10.1109/TITS.2017.2654511
|
24 |
FALSONE A , NOCE F , PRANDINI M . A randomized approach to space debris footprint characterization[J]. IFAC Proceedings Volumes, 2014, 47 (3): 6895- 6900.
doi: 10.3182/20140824-6-ZA-1003.00612
|
25 |
张斌斌, 王兆魁, 张育林. 空间物体解体碎片云的长期演化建模与分析[J]. 中国空间科学技术, 2016, 36 (4): 1- 8.
|
|
ZHANG B B , WANG Z K , ZHANG Y L . Modeling and analysis on the long-term evolution of the space debris cloud[J]. Chinese Space Science and Technology, 2016, 36 (4): 1- 8.
|
26 |
KRISKO P H , HORSTMAN M , FUDGE M L . SOCIT4 collisional-breakup test data analysis: with shape and materials characterization[J]. Advances in Space Research, 2008, 41 (7): 1138- 1146.
doi: 10.1016/j.asr.2007.10.023
|
27 |
NABAPURE D . DSMC investigation of rarefied gas flow over a 2D forward-facing step: effect of Knudsen number[J]. Acta Astronautica, 2021, 178, 89- 109.
doi: 10.1016/j.actaastro.2020.08.030
|
28 |
胡锐锋, 龚自正, 吴子牛. 无控航天器与空间碎片再入的工程预测方法研究现状[J]. 航天器环境工程, 2014, 31 (5): 548- 557.
doi: 10.3969/j.issn.1673-1379.2014.05.017
|
|
HU R F , GONG Z Z , WU Z N . Engineering methods for reentry prediction of uncontrolled spacecraft and space debris: the state of the art[J]. Spacecraft Environment Engineering, 2014, 31 (5): 548- 557.
doi: 10.3969/j.issn.1673-1379.2014.05.017
|
29 |
PICONE J M , HEDIN A E , DROB D P , et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107 (A12): 1468.
|
30 |
TANG Q , ZHOU Y F , DU Z T , et al. A comparison of meteor radar observation over china region with horizontal wind model (HWM14)[J]. Atmosphere, 2021, 12 (1): 98.
doi: 10.3390/atmos12010098
|