Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (1): 270-278.doi: 10.12305/j.issn.1001-506X.2022.01.33
• Guidance, Navigation and Control • Previous Articles Next Articles
Weiqiang MA, Yongqi GAO*, Miao ZHAO
Received:
2021-01-13
Online:
2022-01-01
Published:
2022-01-19
Contact:
Yongqi GAO
CLC Number:
Weiqiang MA, Yongqi GAO, Miao ZHAO. Global-best difference-mutation brain storm optimization algorithm[J]. Systems Engineering and Electronics, 2022, 44(1): 270-278.
Table 1
Selected standard test functions"
类型 | 函数名称 | 表达式 | 搜索区域 |
多峰 | Ackley | [-32, 32] | |
Alpine | [-10, 10] | ||
Griewank | [-600, 600] | ||
Rastrigin | [-5.12, 5.12] | ||
单峰 | Sphere | [-100, 100] | |
Schwefel | [-30, 30] |
Table 2
Optimization results of three dimensions with different parameters for GDBSO"
标准测试函数 | f1 | f2 | f3 | f4 | f5 | f6 | |
平均值 | pr=0 | 8.88E-16 | 2.11E-41 | 5.47E-03 | 0.00E+00 | 1.46E-88 | 2.22E-44 |
pr=0.001 | 8.88E-16 | 2.77E-43 | 6.11E-03 | 1.99E-02 | 4.47E-88 | 3.04E-44 | |
pr=0.005 | 8.88E-16 | 4.19E-39 | 4.88E-03 | 1.99E-02 | 4.23E-88 | 4.00E-43 | |
pr=0.01 | 8.88E-16 | 1.22E-41 | 6.66E-03 | 0.00E+00 | 2.39E-87 | 1.37E-43 | |
pr=0.05 | 8.88E-16 | 1.35E-38 | 4.98E-03 | 0.00E+00 | 5.21E-83 | 8.43E-42 | |
pr=0.1 | 8.88E-16 | 9.77E-38 | 5.92E-03 | 0.00E+00 | 2.33E-78 | 1.84E-39 | |
标准差 | pr=0 | 0.00E+00 | 1.46E-40 | 4.63E-03 | 0.00E+00 | 4.38E-88 | 2.38E-44 |
pr=0.001 | 0.00E+00 | 1.41E-40 | 4.68E-03 | 1.41E-01 | 2.14E-87 | 3.39E-44 | |
pr=0.005 | 0.00E+00 | 2.79E-38 | 3.05E-03 | 1.41E-01 | 1.19E-87 | 5.19E-43 | |
pr=0.01 | 0.00E+00 | 7.83E-41 | 5.13E-03 | 0.00E+00 | 6.08E-87 | 2.28E-43 | |
pr=0.05 | 0.00E+00 | 5.44E-38 | 3.74E-03 | 0.00E+00 | 1.45E-82 | 1.32E-42 | |
pr=0.1 | 0.00E+00 | 3.13E-37 | 4.40E-03 | 0.00E+00 | 5.61E-78 | 2.01E-39 |
Table 3
Optimization results of 30 dimensions with different parameters of GDBSO"
标准测试函数 | f1 | f2 | f3 | f4 | f5 | f6 | |
平均值 | pr=0 | 1.21E-01 | 5.51E-16 | 8.56E-03 | 2.32E+01 | 5.69E-139 | 9.83E-77 |
pr=0.001 | 1.29E-01 | 3.53E-16 | 8.91E-03 | 2.33E+01 | 1.23E-139 | 1.77E-76 | |
pr=0.005 | 6.85E-02 | 4.42E-16 | 5.62E-03 | 2.35E+01 | 1.50E-139 | 1.59E-74 | |
pr=0.01 | 1.95E-01 | 3.44E-16 | 7.53E-03 | 2.26E+01 | 1.92E-139 | 8.56E-76 | |
pr=0.05 | 1.21E-01 | 3.22E-16 | 8.36E-03 | 2.48E+01 | 2.03E-134 | 2.87E-73 | |
pr=0.1 | 1.48E-01 | 3.50E-16 | 8.32E-03 | 2.24E+01 | 4.08E-128 | 3.24E-69 | |
标准差 | pr=0 | 3.06E-01 | 6.04E-16 | 8.35E-03 | 7.49E+00 | 2.53E-138 | 2.32E-76 |
pr=0.001 | 3.57E-01 | 4.92E-16 | 7.72E-03 | 8.50E+00 | 6.36E-139 | 5.89E-76 | |
pr=0.005 | 2.77E-01 | 4.54E-16 | 4.58E-03 | 6.87E+00 | 7.36E-139 | 5.57E-74 | |
pr=0.01 | 4.55E-01 | 4.60E-16 | 7.96E-03 | 7.36E+00 | 8.63E-139 | 2.92E-75 | |
pr=0.05 | 3.32E-01 | 3.49E-16 | 9.12E-03 | 8.15E+00 | 1.04E-133 | 5.20E-73 | |
pr=0.1 | 3.74E-01 | 4.57E-16 | 7.08E-03 | 5.50E+00 | 1.41E-127 | 8.02E-69 |
Table 4
Optimization results of three dimensians with different algorithms"
标准测试函数 | BSO | GBSO | GDBSO | MBSO | |||||||
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | ||||
f1 | 2.27E-05 | 1.18E-05 | 4.66E-10 | 1.37E-09 | 8.88E-16 | 0.00E+00 | 8.88E-16 | 0.00E+00 | |||
f2 | 2.67E-06 | 3.59E-06 | 1.70E-12 | 9.17E-12 | 4.19E-39 | 2.79E-38 | 3.23E-22 | 2.24E-21 | |||
f3 | 1.49E-01 | 1.65E-01 | 4.34E-03 | 2.84E-03 | 4.88E-03 | 3.05E-03 | 5.42E-03 | 4.45E-03 | |||
f4 | 9.95E-02 | 3.23E-01 | 1.99E-02 | 1.41E-01 | 1.99E-02 | 1.41E-01 | 0.00E+00 | 0.00E+00 | |||
f5 | 1.34E-10 | 1.25E-10 | 2.12E-19 | 8.08E-19 | 4.23E-88 | 1.19E-87 | 1.78E-66 | 4.30E-66 | |||
f6 | 1.90E-05 | 7.41E-06 | 1.59E-10 | 4.67E-10 | 4.00E-43 | 5.19E-43 | 9.67E-33 | 1.15E-32 |
Table 5
Optimization results of 50 dimensians with different algorithms"
标准测试函数 | BSO | GBSO | GDBSO | MBSO | |||||||
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | ||||
f1 | 1.73E+00 | 5.77E-01 | 1.61E-10 | 7.63E-11 | 1.28E+00 | 6.68E-01 | 9.09E-01 | 6.15E-01 | |||
f2 | 5.35E+00 | 3.00E+00 | 8.54E-05 | 3.94E-04 | 1.87E-15 | 9.34E-16 | 2.05E-15 | 1.25E-15 | |||
f3 | 6.58E-03 | 7.57E-03 | 3.80E-03 | 2.64E-03 | 7.87E-03 | 9.18E-03 | 3.50E-03 | 1.80E-03 | |||
f4 | 8.06E+01 | 2.20E+01 | 2.67E+01 | 5.45E+00 | 4.66E+01 | 1.14E+01 | 1.05E+02 | 2.96E+01 | |||
f5 | 2.23E-07 | 1.94E-07 | 9.59E-19 | 1.08E-18 | 8.64E-125 | 5.56E-124 | 1.06E-90 | 3.45E-90 | |||
f6 | 6.68E+02 | 1.03E+02 | 8.39E-08 | 3.88E-07 | 6.29E-74 | 1.87E-72 | 5.72E-51 | 9.21E-51 |
Table 6
Optimization efficiency and reliability with three dimensions"
标准测试函数 | BSO | GBSO | GDBSO | MBSO | |||||||
平均迭代次数 | 成功率/% | 平均迭代次数 | 成功率/% | 平均迭代次数 | 成功率/% | 平均迭代次数 | 成功率/% | ||||
f1 | - | - | 290 | 92 | 73 | 100 | 89 | 100 | |||
f2 | - | - | 285 | 100 | 95 | 100 | 128 | 100 | |||
f3 | 20 | 4 | 233 | 96 | 125 | 94 | 122 | 88 | |||
f4 | 108 | 98 | 95 | 98 | 53 | 100 | 55 | 100 | |||
f5 | 278 | 100 | 275 | 100 | 41 | 100 | 50 | 100 | |||
f6 | - | - | 290 | 98 | 80 | 100 | 96 | 100 |
Table 7
Optimization efficiency and reliability with 30 dimensions"
标准测试函数 | BSO | GBSO | GDBSO | MBSO | |||||||
平均迭代次数 | 成功率/% | 平均迭代次数 | 成功率/% | 平均迭代次数 | 成功率/% | 平均迭代次数 | 成功率/% | ||||
f1 | 1 935 | 60 | 2 879 | 96 | 520 | 96 | 648 | 98 | |||
f2 | - | - | 2 868 | 76 | 525 | 100 | 671 | 100 | |||
f3 | 960 | 72 | 2 576 | 90 | 183 | 90 | 106 | 96 | |||
f4 | - | - | - | - | - | - | - | - | |||
f5 | 1 733 | 100 | 2 798 | 100 | 330 | 100 | 408 | 100 | |||
f6 | - | - | 2 896 | 2 | 598 | 100 | 765 | 100 |
1 | 申海. 集群智能及其应用[M]. 北京: 科学出版社, 2019: 41- 43. |
SHEN H . Swarm intelligence and its application[M]. Beijing: Science Press, 2019: 41- 43. | |
2 | SHI Y H. Brain storm optimization algorithm[C]//Proc. of the 2nd International Conference on Swarm Intelligence, 2011: 303-309. |
3 |
SUN C H , DUAN H B , SHI Y H . Optimal satellite formation reconfiguration based on closed-loop brain storm optimization[J]. IEEE Computational Intelligence Magazine, 2013, 8 (4): 39- 51.
doi: 10.1109/MCI.2013.2279560 |
4 |
DUAN H B , LI S T , SHI Y H . Predator-prey brain storm optimization for DC brushless motor[J]. IEEE Trans.on Magnetics, 2013, 49 (10): 5336- 5340.
doi: 10.1109/TMAG.2013.2262296 |
5 | CHEN J F, CHENG S, CHEN Y, et al. Enhanced brain storm optimization algorithm for wireless sensor networks deployment[C]// Proc. of the 6th International Conference on Swarm Intelligence, 2015: 373-381. |
6 | 陈山, 宋樱, 房胜男. 基于头脑风暴优化算法的Wiener模型参数辨识[J]. 控制与决策, 2017, 32 (12): 2291- 2295. |
CHEN S , SONG Y , FANG S N . Parameter identification of Wiener systems using brain storm optimization algorithm[J]. Control and Decision, 2017, 32 (12): 2291- 2295. | |
7 | 梁志刚, 顾军华. 改进头脑风暴优化算法与Powell算法结合的医学图像配准[J]. 计算机应用, 2018, 38 (9): 2683- 2688. |
LIANG Z G , GU J H . Medical image registration by integrating modified brain storm optimization algorithm and Powell algorithm[J]. Journal of Computer Applications, 2018, 38 (9): 2683- 2688. | |
8 | 李怡敏, 王宝珠, 刘翠响. DBBSO算法在低空航线规划中的应用[J]. 现代电子技术, 2019, 42 (22): 108- 112. |
LI Y M , WANG B Z , LIU C X . Application of DBBSO algorithm in low-altitude air route planning[J]. Modern Electronics Technique, 2019, 42 (22): 108- 112. | |
9 | CAO Z J, WANG L. An active learning brain storm optimization algorithm with a dynamically changing cluster cycle for global optimization[EB-OL]. [2021-01-13]. https://doi.org/10-1007/s10586-019-02918-0. |
10 | SHI Y H. Brain storm optimization algorithm in objective space[C]// Proc. of the IEEE Congress on Evolutionary Computation, 2015: 1227-1234. |
11 |
CHENG S , QIN Q D , CHEN J F , et al. Brain storm optimization algorithm: a review[J]. Artificial Intelligence Review, 2016, 46 (4): 445- 458.
doi: 10.1007/s10462-016-9471-0 |
12 | LIU J N, PENG H, WU Z J, et al. Multi-strategy brain storm optimization algorithm with dynamic parameters adjustment[EB-OL]. [2021-01-13]. https://doi.org/10.1007/s10489-019-016007-0. |
13 |
YANG Y T , SHI Y H , XIA S R . Advanced discussion mechanism-based brain storm optimization algorithm[J]. Soft Computing, 2015, 19 (10): 2997- 3007.
doi: 10.1007/s00500-014-1463-x |
14 | DAI C , LEI X J . A multi-objective brain storm optimization algorithm based on decomposition[J]. Complexity, 2019, 2019, 5301284. |
15 |
GUO Y N , YANG H C , CHEN M R , et al. Grid-based dynamic robust multi-objective brain storm optimization algorithm[J]. Soft Computing, 2020, 24 (10): 7395- 7475.
doi: 10.1007/s00500-019-04365-w |
16 |
PENG H , DENG C S , WU Z J . SPBSO: self-adaptive brain storm optimization algorithm with pbest guided step-size[J]. Journal of Intelligent and Fuzzy Systems, 2019, 36 (6): 5423- 5434.
doi: 10.3233/JIFS-181310 |
17 | ZHAN Z H, ZHANG J, SHI Y H, et al. A modified brain storm optimization[C]//Proc. of the IEEE Congress on Evolutionary Computation, 2012: 1969-1976. |
18 | ZHU H Y, SHI Y H. Brain storm optimization algorithms with k-medians clustering algorithms[C]//Proc. of the IEEE 7th International Conference on Advanced Computational Intelligence, 2015: 107-110. |
19 |
EL-ABD M . Global-best brain storm optimization algorithm[J]. Swarm and Evolutionary Computation, 2017, 37, 27- 44.
doi: 10.1016/j.swevo.2017.05.001 |
20 |
ZHU G P , KWONG S . Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217, 3166- 3173.
doi: 10.1016/j.amc.2010.08.049 |
21 |
EL-ABD M . An improved global-best harmony search algorithm[J]. Applied Mathematics and Computation, 2013, 222, 94- 106.
doi: 10.1016/j.amc.2013.07.020 |
22 |
XIANG W L , AN M Q , LI Y Z , et al. An improved global-best harmony search algorithm for faster optimization[J]. Expert Systems with Applications, 2014, 41 (13): 5788- 5803.
doi: 10.1016/j.eswa.2014.03.016 |
23 | DI L, ZHENG Z, XIA M, et al. Robot path planning based on an improved multi-objective PSO method[C]//Proc. of the 1st International Conference on Computer Engineering, Information Science & Application Technology, 2016: 496-501. |
24 | 冯炜, 张静远, 王众, 等. 海洋环境下基于量子行为粒子群优化的时间最短路径规划方法[J]. 海军工程大学学报, 2017, 29 (6): 72- 77. |
FENG W , ZHANG J Y , WANG Z , et al. A time-optimal path planning method based on quantum-behaved particle swarm optimization in ocean environment[J]. Journal of Naval University of Engineering, 2017, 29 (6): 72- 77. | |
25 | 张岳星, 王轶群, 李硕, 等. 基于海图和改进粒子群优化算法的AUV全局路径规划[J]. 机器人, 2020, 42 (1): 120- 128. |
ZHANG Y X , WANG Y Q , LI S , et al. Global path planning for AUV based on charts and the improved particle swarm optimization algorithm[J]. Robot, 2020, 42 (1): 120- 128. | |
26 | 赵苗, 高永琪, 吴笛霄, 等. 复杂海战场环境下AUV全局路径规划方法研究[J]. 国防科技大学学报, 2021, 43 (1): 41- 48. |
ZHAO M , GAO Y Q , WU D X , et al. Research on AUV global path planning method in complex sea battle field environment[J]. Journal of National University of Defense Technology, 2021, 43 (1): 41- 48. | |
27 | BASAK A, PAL S, DAS S, et al. Circular antenna array synthesis with a differential invasive weed optimization algorithm[C]// Proc. of the IEEE 10th International Conference on Hybrid Intelligent Systems, 2010: 153-158. |
[1] | Haobo FENG, Qiao HU, Zhenyi ZHAO. AUV swarm path planning based on elite family genetic algorithm [J]. Systems Engineering and Electronics, 2022, 44(7): 2251-2262. |
[2] | Yongqi GAO, Weiqiang MA, Linsen ZHANG, Peng WANG, Miao ZHAO. Distributed multi-AUVs cooperative search method [J]. Systems Engineering and Electronics, 2022, 44(5): 1670-1676. |
[3] | Dou CHEN, Xiuyun MENG. UAV offline path planning based on self-adaptive coyote optimization algorithm [J]. Systems Engineering and Electronics, 2022, 44(2): 603-611. |
[4] | Yang YIN, Quanshun YANG, Zheng WANG, Yang LIU. USV cluster coverage search method with communication distance constraint [J]. Systems Engineering and Electronics, 2022, 44(12): 3821-3828. |
[5] | Qingqing YANG, Yingying GAO, Yu GUO, Boyuan XIA, Kewei YANG. Target search path planning for naval battle field based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(11): 3486-3495. |
[6] | Tong HAN, Andi TANG, Huan ZHOU, Dengwu XU, Lei XIE. Multiple UAV cooperative path planning based on LASSA method [J]. Systems Engineering and Electronics, 2022, 44(1): 233-241. |
[7] | Lei LAI, Kun ZOU, Dewei WU, Baozhong LI. Multi-UAV cooperative path planning based on improved MOFA evolution of interactive strategy [J]. Systems Engineering and Electronics, 2021, 43(8): 2282-2289. |
[8] | Zhiqiang JIAO, Jieyong ZHANG, Peiyang YAO, Xun WANG, Yichao HE. Distributed evolution method of C4ISR service deployment based on hierarchical structure [J]. Systems Engineering and Electronics, 2021, 43(6): 1572-1585. |
[9] | Shiwei FAN, Ya ZHANG, Qiang HAO, Pan JIANG, Fei YU. Cooperative positioning and error estimation algorithm based on factor graph [J]. Systems Engineering and Electronics, 2021, 43(2): 499-507. |
[10] | Wenming WANG, Jialu DU. Agent path planning based on regular hexagon grid JPS algorithm [J]. Systems Engineering and Electronics, 2021, 43(12): 3635-3642. |
[11] | Yanan LI, Haibin HUANG, Liangming CHEN, Yufei ZHUANG, Xiaoli WANG. Energy-optimal three-dimensional path planning for AUV under changing ocean current environment [J]. Systems Engineering and Electronics, 2021, 43(12): 3667-3674. |
[12] | Wengang LI, Liujiang WANG, Dexiang FANG, Yuwei LI, Jun Huang. Path planning algorithm combining A* with DWA [J]. Systems Engineering and Electronics, 2021, 43(12): 3694-3702. |
[13] | Yao HAN, Shaohua LI. UAV path planning based on improved artificial potential field [J]. Systems Engineering and Electronics, 2021, 43(11): 3305-3311. |
[14] | Daidai CHEN, Wanyou LI. Local path planning algorithm for USV with towed cable [J]. Systems Engineering and Electronics, 2020, 42(9): 1988-1994. |
[15] | Quanxian ZHANG, Bin ZENG, Houpu LI. Underway replenishment path planning method for distributed naval warfare under the influence of sea conditions [J]. Systems Engineering and Electronics, 2020, 42(10): 2312-2319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||