Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (1): 233-241.doi: 10.12305/j.issn.1001-506X.2022.01.29
• Guidance, Navigation and Control • Previous Articles Next Articles
Tong HAN1, Andi TANG2,*, Huan ZHOU1, Dengwu XU3, Lei XIE2
Received:
2021-02-22
Online:
2022-01-01
Published:
2022-01-19
Contact:
Andi TANG
CLC Number:
Tong HAN, Andi TANG, Huan ZHOU, Dengwu XU, Lei XIE. Multiple UAV cooperative path planning based on LASSA method[J]. Systems Engineering and Electronics, 2022, 44(1): 233-241.
1 |
ZHAO Y , ZHENG Z , LIU Y . Survey on computational-intelligence-based UAV path planning[J]. Knowledge-Based Systems, 2018, 158, 54- 64.
doi: 10.1016/j.knosys.2018.05.033 |
2 | 沈林成, 陈璟, 王楠. 飞行器任务规划技术综述[J]. 航空学报, 2014, 35 (3): 593- 606. |
SHEN L C , CHEN J , WANG N . A review of mission planning techniques for aircraft[J]. Journal of Aeronautics, 2014, 35 (3): 593- 606. | |
3 |
胡中华, 赵敏, 姚敏, 等. 无人机航迹规划技术研究及发展趋势[J]. 航空电子技术, 2009, 40 (2): 24- 29, 36.
doi: 10.3969/j.issn.1006-141X.2009.02.006 |
HU Z H , ZHAO M , YAO M , et al. Research and development trend of unmanned aircraft trajectory planning technology[J]. Avionics, 2009, 40 (2): 24- 29, 36.
doi: 10.3969/j.issn.1006-141X.2009.02.006 |
|
4 |
WU X L , XU L , ZHEN R , et al. Bi-directional adaptive A* algorithm toward optimal path planning for large-scale UAV under multi-constraints[J]. IEEE Access, 2020, 8, 85431- 85440.
doi: 10.1109/ACCESS.2020.2990153 |
5 |
MIAO Y F , LUO Z , XIA L S . Application of improved sparse A* algorithm in UAV path planning[J]. Information Technology Journal, 2013, 12 (17): 4058- 4062.
doi: 10.3923/itj.2013.4058.4062 |
6 |
程凝怡, 刘志乾, 李昱奇. 一种基于Dijkstra的多约束条件下智能飞行器航迹规划算法[J]. 西北工业大学学报, 2020, 38 (6): 1284- 1290.
doi: 10.3969/j.issn.1000-2758.2020.06.018 |
CHENG N Y , LIU Z Q , LI Y Q . A Dijkstra-based algorithm for intelligent vehicle trajectory planning under multiple constraints[J]. Journal of Northwestern Polytechnical University, 2020, 38 (6): 1284- 1290.
doi: 10.3969/j.issn.1000-2758.2020.06.018 |
|
7 |
KARVE D , KAPADIA F . Multi-UAV path planning using modified Dijkstra's algorithm[J]. International Journal of Computer Applications, 2020, 175 (28): 26- 33.
doi: 10.5120/ijca2020920816 |
8 | 王伟, 王华. 基于约束人工势场法的弹载飞行器实时避障航迹规划[J]. 航空动力学报, 2014, 29 (7): 1738- 1743. |
WANG W , WANG H . Real-time obstacle avoidance trajectory planning for ballistic vehicles based on constrained artificial potential field method[J]. Journal of Aerodynamics, 2014, 29 (7): 1738- 1743. | |
9 |
CHEN Y B , LUO G C , MEI Y S , et al. UAV path planning using artificial potential field method updated by optimal control theory[J]. International Journal of Systems Science, 2016, 47 (6): 1407- 1420.
doi: 10.1080/00207721.2014.929191 |
10 |
SUN J Y , TANG J , LAO S Y . Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm[J]. IEEE Access, 2017, 5, 18382- 18390.
doi: 10.1109/ACCESS.2017.2746752 |
11 |
KOTHARI M , POSTLETHWAITE I . A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees[J]. Journal of Intelligent and Robotic Systems, 2013, 71 (2): 231- 253.
doi: 10.1007/s10846-012-9776-4 |
12 | WU X J , XU L , ZHEN R , et al. Biased sampling potentially guided intelligent bidirectional RRT algorithm for UAV path planning in 3D environment[J]. Mathematical Problems in Engineering, 2019, 2019 (8): 5157403. |
13 | 李文广, 胡永江, 庞强伟, 等. 基于改进遗传算法的多无人机协同侦察航迹规划[J]. 中国惯性技术学报, 2020, 28 (2): 248- 255. |
LI W G , HU Y J , PANG Q W , et al. Cooperative reconnaissance track planning for multiple UAVs based on improved genetic algorithm[J]. Chinese Journal of Inertial Technology, 2020, 28 (2): 248- 255. | |
14 | LIN C E , SYU Y M . GA/DP hybrid solution for UAV multi-target path planning[J]. Journal of Aeronautics Astronautics & Aviation, 2016, 48 (3): 203- 220. |
15 |
PAN J S , LIU N X , CHU S C , et al. A hybrid differential evolution algorithm and its application in unmanned combat aerial vehicle path planning[J]. IEEE Access, 2020, 8, 17691- 17712.
doi: 10.1109/ACCESS.2020.2968119 |
16 |
YU X , LI C , ZHOU J F . A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios[J]. Knowledge-Based Systems, 2020, 204, 106209.
doi: 10.1016/j.knosys.2020.106209 |
17 |
XU C F , DUAN H B , LIU F , et al. Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning[J]. Aerospace Science and Technology, 2010, 14 (8): 535- 541.
doi: 10.1016/j.ast.2010.04.008 |
18 | DING L , WU H , YAO Y , et al. UAV path planning by probability-scaling adaptive chaotic artificial bee colony algorithm[J]. Journal of Computational Information Systems, 2015, 11 (11): 4135- 4143. |
19 | 黄长强, 赵克新. 基于改进蚁狮算法的无人机三维航迹规划[J]. 电子与信息学报, 2018, 40 (7): 1532- 1538. |
HUANG C Q , ZHAO K X . Improved ant-lion algorithm-based 3D trajectory planning for UAVs[J]. Journal of Electronics and Information, 2018, 40 (7): 1532- 1538. | |
20 | YAO P , WANG H L . Dynamic adaptive ant lion optimizer applied to route planning for unmanned aerial vehicle[J]. Soft Computing: a Fusion of Foundations, Methodologies and Applications, 2017, 21 (18): 5475- 5488. |
21 |
DEWANGAN R K , SHUKLA A , GODFREY W W . Three-dimensional path planning using Grey wolf optimizer for UAVs[J]. Applied Intelligence, 2019, 49 (6): 2201.
doi: 10.1007/s10489-018-1384-y |
22 | 单文昭, 崔乃刚, 黄蓓, 等. 基于PSO-HJ算法的多无人机协同航迹规划方法[J]. 中国惯性技术学报, 2020, 28 (1): 122- 128. |
SHAN W Z , CUI N G , HUANG B , et al. Multiple UAV cooperative path planning based on PSO-HJ method[J]. Journal of Chinese Inertial Technology, 2020, 28 (1): 122- 128. | |
23 |
徐瑞莲, 周新志, 宁芊. 基于改进差分进化算法的多无人机航迹规划[J]. 火力与指挥控制, 2020, 45 (1): 169- 173, 179.
doi: 10.3969/j.issn.1002-0640.2020.01.034 |
XU R L , ZHOU X Z , YU Q . Multi-UAV trajectory planning based on improved differential evolutionary algorithm[J]. Firepower and Command Control, 2020, 45 (1): 169- 173, 179.
doi: 10.3969/j.issn.1002-0640.2020.01.034 |
|
24 | MIAO H . Dynamic robot path planning using an enhanced simulated annealing approach[J]. Applied Mathematics & Computation, 2013, 222 (5): 420- 437. |
25 | XUE J , SHEN B . A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering: an Open Access Journal, 2020, 8 (1): 22- 34. |
26 | 汤安迪, 韩统, 徐登武, 等. 基于混沌麻雀搜索算法的无人机航迹规划方法[EB/OL]. [2021-01-16]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html. |
TANG A D, HAN T, XU D W, et al. An approach to UAV trajectory planning based on chaotic sparrow search algorithm[EB/OL]. [2021-01-16]. http://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html. | |
27 |
MIRJALILI S , LEWIS A . The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008 |
28 | ZHAO W G , ZHANG Z X , WANG L Y . Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications[J]. Engineering Applications of Artificial Intelligence, 2020, 87 (1): 103300. |
[1] | Haobo FENG, Qiao HU, Zhenyi ZHAO. AUV swarm path planning based on elite family genetic algorithm [J]. Systems Engineering and Electronics, 2022, 44(7): 2251-2262. |
[2] | Dou CHEN, Xiuyun MENG. UAV offline path planning based on self-adaptive coyote optimization algorithm [J]. Systems Engineering and Electronics, 2022, 44(2): 603-611. |
[3] | Yang YIN, Quanshun YANG, Zheng WANG, Yang LIU. USV cluster coverage search method with communication distance constraint [J]. Systems Engineering and Electronics, 2022, 44(12): 3821-3828. |
[4] | Qingqing YANG, Yingying GAO, Yu GUO, Boyuan XIA, Kewei YANG. Target search path planning for naval battle field based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(11): 3486-3495. |
[5] | Weiqiang MA, Yongqi GAO, Miao ZHAO. Global-best difference-mutation brain storm optimization algorithm [J]. Systems Engineering and Electronics, 2022, 44(1): 270-278. |
[6] | Lei LAI, Kun ZOU, Dewei WU, Baozhong LI. Multi-UAV cooperative path planning based on improved MOFA evolution of interactive strategy [J]. Systems Engineering and Electronics, 2021, 43(8): 2282-2289. |
[7] | Zhiqiang JIAO, Jieyong ZHANG, Peiyang YAO, Xun WANG, Yichao HE. Distributed evolution method of C4ISR service deployment based on hierarchical structure [J]. Systems Engineering and Electronics, 2021, 43(6): 1572-1585. |
[8] | Yi ZHANG, Guowei FANG, Xiuxia YANG. Target tracking method for UAVs formation based on graph Laplacian [J]. Systems Engineering and Electronics, 2021, 43(3): 796-805. |
[9] | Wenming WANG, Jialu DU. Agent path planning based on regular hexagon grid JPS algorithm [J]. Systems Engineering and Electronics, 2021, 43(12): 3635-3642. |
[10] | Yanan LI, Haibin HUANG, Liangming CHEN, Yufei ZHUANG, Xiaoli WANG. Energy-optimal three-dimensional path planning for AUV under changing ocean current environment [J]. Systems Engineering and Electronics, 2021, 43(12): 3667-3674. |
[11] | Wengang LI, Liujiang WANG, Dexiang FANG, Yuwei LI, Jun Huang. Path planning algorithm combining A* with DWA [J]. Systems Engineering and Electronics, 2021, 43(12): 3694-3702. |
[12] | Yao HAN, Shaohua LI. UAV path planning based on improved artificial potential field [J]. Systems Engineering and Electronics, 2021, 43(11): 3305-3311. |
[13] | Daidai CHEN, Wanyou LI. Local path planning algorithm for USV with towed cable [J]. Systems Engineering and Electronics, 2020, 42(9): 1988-1994. |
[14] | Quanxian ZHANG, Bin ZENG, Houpu LI. Underway replenishment path planning method for distributed naval warfare under the influence of sea conditions [J]. Systems Engineering and Electronics, 2020, 42(10): 2312-2319. |
[15] | Sheng GAO, Jianliang AI, Zhihao WANG. Mixed population RRT algorithm for UAV path planning [J]. Systems Engineering and Electronics, 2020, 42(1): 101-107. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||