1 |
PERRUQUETTI W , BARBOT J P . Sliding mode control in engineering[J]. Automatica, 2003, 39, 951- 955.
doi: 10.1016/S0005-1098(03)00004-9
|
2 |
DU H , YU X , CHEN M Z Q , et al. Chattering-free discrete-time sliding mode control[J]. Automatica, 2016, 68, 87- 91.
doi: 10.1016/j.automatica.2016.01.047
|
3 |
MA H X , LI Y , XIONG Z Q . Discrete-time sliding-mode control with enhanced power reaching law[J]. IEEE Trans.on Industrial Electronics, 2019, 66 (6): 4629- 4638.
doi: 10.1109/TIE.2018.2864712
|
4 |
MA H X , WU J , XIONG Z Q . Discrete-time sliding-mode control with improved quasi-sliding-mode domain[J]. IEEE Trans.on Industrial Electronics, 2016, 63 (10): 6292- 6304.
doi: 10.1109/TIE.2016.2580531
|
5 |
ZHANG J Q , SHI P , XIA Y T , et al. Discrete-time sliding mode control with disturbance rejection[J]. IEEE Trans.on Industrial Electronics, 2019, 66 (10): 7967- 7975.
doi: 10.1109/TIE.2018.2879309
|
6 |
朱齐丹, 汪瞳. 一种改进的离散时间系统变结构控制设计方法[J]. 自动化学报, 2010, 36 (6): 885- 889.
|
|
ZHU Q D , WANG T . An improved design scheme of variable structure control for discrete-time systems[J]. Acta Automatica Sinica, 2010, 36 (6): 885- 889.
|
7 |
魏佳琪, 贾超, 董恩增. 一种组合趋近律的离散时间滑模控制[C]//2019中国自动化大会, 2019.
|
|
WEI J Q, JIA C, DONG E Z. Discrete-time sliding mode control based on a combined approaching law[C]//Proc. of China Automation Conference, 2019.
|
8 |
JEANROY A , BOUVET A , REMILLIEUX G . HRG and marine applications[J]. Gyroscopy and Navigation, 2014, 5 (2): 67- 74.
doi: 10.1134/S2075108714020047
|
9 |
MEYER A D, ROZELLE D M, TRUSOV A A, et al. Milli-HRG inertial sensor assembly reality[C]//Proc. of IEEE/ION Position, Location and Navigation Symposium, 2018.
|
10 |
FABRICE D. Skynaute by safran-how the hrg technological breakthrough benefits to a disruptive IRS (Inertial Reference System) for commercial aircraft[C]//Proc. of DGON Inertial Sensors and Systems, 2019.
|
11 |
DELHAYE F. HRG by SAFRAN: the game-changing techno-logy[C]//Proc. of IEEE International Symposium on Inertial Sensors and Systems, 2018.
|
12 |
赵清. MEMS陀螺仪滑模控制策略研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
|
|
ZHAO Q. Research on sliding mode control strategy of MEMS gyroscope[D]. Harbin: Harbin Engineering University, 2015.
|
13 |
VARGHESE P M, PRIYA P S L. Robust control of a dimensionless dual axis MEMS vibratory gyroscope-a sliding mode approach[C]//Proc. of International CET Conference on Control, Communication, and Computing, 2018.
|
14 |
RAHMANI M , RAHMAN M H . A new adaptive fractional sliding mode control of a MEMS gyroscope[J]. Microsystem Technologies, 2019, 25 (9): 3409- 3416.
doi: 10.1007/s00542-018-4212-8
|
15 |
ZHANG R M , XU B M , WEI Q H , et al. Serial-parallel estimation model-based sliding mode control of MEMS gyroscopes[J]. IEEE Trans.on Systems Man & Cybernetics Systems, 2020, 412 (35): 711- 722.
|
16 |
邓卫斌, 李云妮. MEMS陀螺系统自适应滑模控制研究[J]. 传感器与微系统, 2020, 39 (6): 45- 47.
|
|
DENG W B , LI Y N . Research on adaptive sliding mode control of MEMS gyroscope system[J]. Sensors and Microsystems, 2020, 39 (6): 45- 47.
|
17 |
WANG Z, FEI J H. Double loop neural fractional-order terminal sliding mode control of MEMS gyroscope[C]//Proceeding of the IEEE, 2021.
|
18 |
RANJBAR E , SURATGAR A A . Design of an adaptive sliding mode controller with a sliding mode Luenberger observer for the MEMS capacitive plates[J]. SN Applied Sciences, 2020, 2 (3): 351.
doi: 10.1007/s42452-020-2148-y
|
19 |
FEI J H , WANG Z B . Multi-loop recurrent neural network fractional-order terminal sliding mode control of mems gyroscope[J]. IEEE Access, 2020, 8, 324117- 324128.
|
20 |
XU B , ZHANG R X , LI S , et al. Composite neural learning-based nonsingular terminal sliding mode control of mems gyroscopes[J]. IEEE Trans.on Neural Networks and Learning Systems, 2020, 31 (4): 1375- 1386.
doi: 10.1109/TNNLS.2019.2919931
|
21 |
RAHMANI M , RAHMAN M H . A novel compound fast fractional integral sliding mode control and adaptive PI control of a MEMS gyroscope[J]. Microsystem Technologies, 2019, 25 (10): 3683- 3689.
doi: 10.1007/s00542-018-4284-5
|
22 |
GAO W X , WANG Y F , HOMAIFA A . Discrete-time variable structure control systems[J]. IEEE Trans.on Industrial Electronics, 1995,
|
23 |
KOTTA U , SARPTURK S Z , ISTEFANOPULOS Y . On the stability of discrete-time sliding mode control systems[J]. IEEE Trans.on Automatic Control, 1989, 34 (9): 1021- 1022.
doi: 10.1109/9.35824
|
24 |
GAO W, HUNG J C. Variable structure control of nonlinear systems: a new approach[J]. IEEE Trans. on Industrial Electronics, 1993, 40; 40(1): 45-55.
|
25 |
FRIEDLAND B , HUTTON M . Theory and error analysis of vibrating-member gyroscope[J]. IEEE Trans.on Automatic Control, 1978, 23 (4): 545- 556.
doi: 10.1109/TAC.1978.1101785
|
26 |
吕志清. 半球谐振陀螺(HRG)信号处理技术[J]. 中国惯性技术学报, 2000, (3): 59- 62.
|
|
LYU Z Q . Signal processing technology of hemispherical resonance gyroscope(HRG)[J]. Journal of Chinese Inertial Technology, 2000, (3): 59- 62.
|
27 |
LYNCH D D. Vibratory gyro analysis by the method of averaging[C]//Proc. of the 2nd Saint Petersburg International Conference on Gyroscopic Technology and Navigation, 1995.
|
28 |
KALMAN R . Controllability of linear dynamical systems[J]. Contributions to Differential Equations, 1963, 1 (3): 189- 213.
|
29 |
ABIDI K , XU J , YUAN X H . On the discrete-time integral sliding-mode control[J]. IEEE Trans.on Automatic Control, 2007, 52 (4): 709- 715.
doi: 10.1109/TAC.2007.894537
|
30 |
SAUKOSKI M. System and circuit design for a capacitive MEMS gyroscope[D]. Finland: Helsinki University, 2008.
|
31 |
LYNCH D D. Coriolis vibratory gyros[C]//Proc. of Symposium Gyro Technology Stuttgart, 1998.
|
32 |
WOO J, CHO J Y, BOYD C, et al. Whole-angle-mode micromachined fused-silica birdbath resonator gyroscope (WA-BRG)[C]//Proc. of the IEEE 27th International Conference on Micro Electro Mechanical Systems, 2014.
|