1 |
刘虹麟. 作战体系能力图谱仿真实验方法研究[D]. 北京: 国防大学, 2018.
|
|
LIU H L. Operations simulation experiment method based on SoS capability map[D]. Beijing: National Defense University, 2018.
|
2 |
唐建, 田福庆. 面向作战实验分析的智能集成仿真元建模方法[M]. 北京: 国防工业出版社, 2018.
|
|
TANG J , TIAN F Q . An intelligent integrated simulation meta-modeling method for combat experimental analysis[M]. Beijing: National Defense Industry Press, 2018.
|
3 |
MICHAEL A. ZEIMER J D. Tew metamodel applications using TERSM[C]//Proc. of the Winter Simulation Conference 1995: 1421-1428.
|
4 |
KILMER R A . Applications of artificial neural networks to combat simulations[J]. Mathematical & Computer Modelling, 1996, 23 (2): 91- 99.
|
5 |
CASSANDRAS C G, GONG W B, LIU C C, et al. Simulation driven metamodeling of complex systems using neural networks[C]// Proc. of the International Society for Optical Engineering, 1998: 218-227.
|
6 |
JACK P C , KLEIJNEN H . Case study: statistical validation of simulation models[J]. European Journal of Operational Research, 1995, 87 (1): 21- 34.
doi: 10.1016/0377-2217(95)00132-A
|
7 |
CAMPBELL P W . The development of a metamodel for a major weapon system cost model[J]. Rand Corporation, 1995, 14 (2): 1421- 1425.
|
8 |
PAUL K , DAVIS , JAMES H . Bigelow, motivated metamodels: synthesis of cause-effect reasoning and statistical metamodeling[J]. Rand Corporation, 2003, 21 (2): 143- 144.
|
9 |
李建平. 仿真元建模中的拟合方法及其应用研究[D]. 长沙: 国防科学技术大学, 2007.
|
|
LI J P. Study on fitting methods of simulation metamodelling and its application[D]. Changsha: National University of Defense Technology, 2007.
|
10 |
张伟. 基于支持向量机的主动元建模方法研究[D]. 长沙: 国防科学技术大学, 2010.
|
|
ZHANG W. Study on motivated metamodelling based on support vector machines[D]. Changsha: National University of Defense Technology, 2007.
|
11 |
唐建, 田福庆. 面向作战实验分析的智能集成仿真元建模方法[M]. 北京: 国防工业出版社, 2018: 71- 85.
|
|
TANG J , TIAN F Q . An intelligent integrated simulation meta-modeling method for combat experimental analysis[M]. Beijing: National Defense Industry Press, 2018: 71- 85.
|
12 |
PAUL K. DAVIS, RUSSELL D. Shaver, justin beck. portfolio-analysis methods for assessing capability options. RAND MG662[EB/OL]. [2021-03-01] https://www.rand.org/pubs/monographs/MG662.html.
|
13 |
曹裕华. 作战实验理论与技术[M]. 北京: 国防工业出版社, 2013: 86- 94.
|
|
CAO Y H . Operational experimental theory and technology[M]. Beijing: National Defense Industry Press, 2013: 86- 94.
|
14 |
PAUL K. DAVI S. Analytic architecture for capabilities-based planning, mission-system analysis, and transformation[EB/OL]. [2021-03-01]. https://www.rand.org/content/dam/rand/pubs/monograph_reports/2005/MR1513.pdf
|
15 |
KLEIJNEN J P C , SARGENT R G . A methodology for fitting and validating metamodels in simulation[J]. European Journal of Operational Research, 2000, 120 (1): 14- 29.
doi: 10.1016/S0377-2217(98)00392-0
|
16 |
周志华. 集成学习基础与算法[M]. 北京: 电子工业出版社, 2020: 64- 65.
|
|
ZHOU Z H . Ensemble methods foundations and algorithms[M]. Beijing: Publishing House of Electronic Industry, 2020: 64- 65.
|
17 |
SIMPSON T W , MAUERY T M , KORTE J J , et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. Journal of American Institute of Aeronautics and Astionautics, 2001, 39, 2233- 2241.
doi: 10.2514/2.1234
|
18 |
JONES D R , SCHONLAU M , WELCH W J . Global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13 (4): 455- 492.
doi: 10.1023/A:1008306431147
|
19 |
JONES D R . A Taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21 (4): 345- 383.
doi: 10.1023/A:1012771025575
|
20 |
MURPHY, B. S. PyKrige: development of a Kriging toolkit for python[C]//Proc. of the Agu Fall Meeting. AGU Fall Meeting Abstracts, 2014, 12: 573.
|
21 |
CLARKE S M , GRIEBSCH J H , SIMPSON T W . Analysis of support vector regression for approximation of complex engineering analyses[J]. Journal of Mechanical Design, 2005, 127 (6): 1077- 1086.
doi: 10.1115/1.1897403
|
22 |
POGGIOT, GIROSI F. A theory of networks for approximation and learning[EB/OL]. [2020-09-29]. https://www.researchgate.net/profile/Federico_Girosi/publication/2526896_A_Theory_of_Networks_for_Approximation_and_Learning/links/02e7e52b37859111fb000000.pdf
|
23 |
TING K M , WITTEN I H . Issues in stacked generalization[J]. Journal of Artificial Intelligence Research, 1999, 10, 271- 289.
doi: 10.1613/jair.594
|
24 |
GOEL T , HAFTKA R T , SHYY W , et al. Ensemble of surrogates[J]. Structural and Multi-diplinary Optimization, 2007, 33 (3): 199- 216.
doi: 10.1007/s00158-006-0051-9
|
25 |
GIUNTA A A , DUDLEY J , NARDUCCI R , et al. Noisy aerodynamic response and smooth approximations in HSCT design[J]. Proc.of the 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 1994, 9, 1117- 1128.
|
26 |
JONES D R , SCHONLAU M , WELCH W J . Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13 (4): 455- 492.
doi: 10.1023/A:1008306431147
|
27 |
LOEPPKY J L , WELCH S W J . Special issue on computer modeling Ⅱ choosing the sample size of a computer experiment: a practical guide[J]. Technometrics, 2009, 51 (4): 366- 376.
doi: 10.1198/TECH.2009.08040
|
28 |
REGIS , ROMMEL G , SHOEMAKER , et al. A stochastic radial basis function method for the global optimization of expensive functions[J]. INFORMS Journal on Computing, 2007, 19 (4): 497- 509.
doi: 10.1287/ijoc.1060.0182
|
29 |
GUTMANN H M . A radial basis function method for global optimization[J]. Journal of Global Optimization, 2000, 19 (3): 201- 227.
|
30 |
RAZAVI S , TOLSON B A , BURN D H . Numerical assessment of metamodeling strategies in computationally intensive optimization[J]. Environmental Modelling & Software, 2012, 34 (6): 67- 86.
|
31 |
WANG C , DUAN Q W , GONG W , et al. An evaluation of adaptive surrogate modeling based optimization with two benchmark problems[J]. Environmental Modelling & Software, 2014, 60 (10): 167- 179.
|
32 |
FORRESTER A I J , SOBESTER A , KEANE A J . Engineering design via surrogate modelling: a practical guide[M]. London: Data Base System and Logic Programming, 2008: 13- 28.
|
33 |
MICHAEL S . Large sample properties of simulations using latin hypercube sampling[J]. Technometrics, 1987, 29 (2): 143- 151.
doi: 10.1080/00401706.1987.10488205
|
34 |
杨镜宇, 胡晓峰. 基于体系仿真试验床的新质作战能力评估[J]. 军事运筹与系统工程, 2016, (30): 5- 9.
|
|
YANG J Y , HU X F . New quality combat capability evaluation based on system simulation test-bed[J]. Military Operations Research and Systems Engineering, 2016, (30): 5- 9.
|
35 |
SCTYHE. Proceedings and bulletin of the international data farming community[EB/OL]. [2021-04-14]https://Core.ac.uk/downloaol/pdf/36738474.pdf.
|