Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (1): 20-27.doi: 10.12305/j.issn.1001-506X.2022.01.03
• Electronic Technology • Previous Articles Next Articles
Lingzhi QU, Junan YANG*, Hui LIU, Keju HUANG
Received:
2021-01-18
Online:
2022-01-01
Published:
2022-01-19
Contact:
Junan YANG
CLC Number:
Lingzhi QU, Junan YANG, Hui LIU, Keju HUANG. Method for individual identification of communication radiation source embedded in attention mechanism[J]. Systems Engineering and Electronics, 2022, 44(1): 20-27.
Table 7
Dataset Ⅱ identification accuracy of 450 MHz ablative experiments %"
算法 | 数据集的信噪比设置/dB | |||||||||
-10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | |
ResNet | 50.74 | 56.06 | 63.40 | 71.38 | 77.76 | 83.19 | 87.65 | 92.34 | 95.10 | 95.95 |
ResNet+CA | 50.85 | 62.34 | 67.23 | 76.59 | 83.40 | 86.27 | 90.21 | 93.72 | 94.78 | 96.70 |
ResNet+SA | 49.89 | 56.27 | 64.57 | 74.14 | 80.85 | 83.40 | 89.04 | 91.27 | 94.89 | 96.48 |
ResNet+AM | 54.26 | 63.30 | 68.29 | 75.11 | 82.77 | 85.32 | 88.29 | 93.62 | 95.43 | 96.17 |
AM+ResNet | 52.23 | 63.82 | 66.91 | 73.61 | 80.42 | 84.68 | 89.04 | 92.65 | 95.31 | 96.48 |
DDAM-ResNet | 54.70 | 64.14 | 69.04 | 78.82 | 83.61 | 85.14 | 91.17 | 94.36 | 96.06 | 97.65 |
Table 8
Dataset Ⅱ identification accuracy of 512 MHz ablative experiments %"
算法 | 数据集的信噪比设置/dB | |||||||||
-10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | |
ResNet | 41.85 | 49.52 | 53.20 | 57.72 | 67.92 | 71.18 | 78.96 | 85.27 | 91.37 | 95.79 |
ResNet+CA | 45.95 | 49.21 | 57.83 | 61.51 | 69.61 | 76.13 | 81.91 | 90.24 | 94.01 | 96.37 |
ResNet+SA | 42.37 | 46.89 | 47.84 | 54.89 | 66.03 | 76.34 | 82.54 | 86.22 | 92.42 | 96.16 |
ResNet+AM | 44.16 | 51.20 | 56.67 | 63.30 | 68.14 | 76.76 | 85.38 | 88.64 | 92.85 | 95.68 |
AM+ResNet | 44.58 | 50.36 | 55.09 | 61.93 | 66.05 | 71.39 | 81.91 | 86.43 | 92.74 | 96.48 |
DDAM-ResNet | 47.10 | 53.62 | 58.46 | 66.04 | 70.87 | 77.49 | 83.38 | 90.43 | 94.37 | 96.85 |
1 | TALBOT K I , DULEY P R , HYATT M H . Specific emitter identification and verification[J]. Technology Review, 2003, 113. |
2 | BALDINI G, STERI G, GIULIANI R. Identification of wireless devices from their physical layer radio-frequency fingerprints[M]. 4th ed. Encyclopedia of Information Science and Technology. Hershey: IGI Global, 2017. |
3 | HUANG G Q , YUAN Y J , WANG X , et al. Specific emitter identification based on nonlinear dynamical characteristics[J]. Canadian Journal of Electrical & Computer Engineering, 2016, 39 (1): 34- 41. |
4 | PAN Y W, PENG H, LI T Y, et al. High-fidelity symbol synchronization for specific emitter identification[C]//Proc. of the IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, 2019: 393-398. |
5 |
SHIEH C S , LIN C T . A vector neural network for emitter identification[J]. IEEE Trans.on Antennas and Propagation, 2002, 50 (8): 1120- 1127.
doi: 10.1109/TAP.2002.801387 |
6 | KLEIN R W, TEMPLE M A, MENDENHALL M J, et al. Sensitivity analysis of burst detection and RF fingerprinting classification performance[C]//Proc. of the IEEE International Conference on Communications, 2009. |
7 |
URETEN O , SERINKEN N . Bayesian detection of Wi-Fi transmitter RF fingerprints[J]. Electronics Letters, 2005, 41 (6): 373- 374.
doi: 10.1049/el:20057769 |
8 | HALL J, BARBEAU M, KRANAKIS E. Radio frequency fingerprinting for intrusion detection in wireless networks[C]//Proc. of the IASTED International Conference on Communications, Internet, and Information Technology, 2005. |
9 |
YUAN Y J , HUANG Z T , WU H , et al. Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features[J]. Communications IET, 2014, 8 (13): 2404- 2412.
doi: 10.1049/iet-com.2013.0865 |
10 |
任东方, 张涛, 韩洁, 等. 基于ITD与纹理分析的特定辐射源识别方法[J]. 通信学报, 2017, 38 (12): 160- 168.
doi: 10.11959/j.issn.1000-436x.2017299 |
REN D F , ZHANG T , HAN J , et al. Specific radiation source identification method based on ITD and texture analysis[J]. Journal of Communications, 2017, 38 (12): 160- 168.
doi: 10.11959/j.issn.1000-436x.2017299 |
|
11 | SATIJA U , TRIVEDI N , BISWAL G , et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2018, 14 (3): 581- 591. |
12 |
LI L , JI H B , JIANG L . Quadratic time-frequency analysis and sequential recognition for specific emitter identification[J]. IET Signal Processing, 2011, 5 (6): 568- 574.
doi: 10.1049/iet-spr.2010.0070 |
13 | HUANG J H , LEI Y K . Communication radio individual recognition based on semi-supervised rectangular network[J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (1): 1- 8. |
14 |
ZHANG X D , SHI Y , BAO Z . A new feature vector using selected bispectra for signal classification with application in radar target recognition[J]. IEEE Trans.on Signal Processing, 2001, 49 (9): 1875- 1885.
doi: 10.1109/78.942617 |
15 |
ZHUO F , HUANG Y L , CHEN J . Radio frequency fingerprint extraction of radio emitter based on I/Q imbalance[J]. Procedia Computer Science, 2017, 107, 472- 477.
doi: 10.1016/j.procs.2017.03.092 |
16 | BRIK V, BANERJEE S, GRUTESER M, et al. Wireless device identification with radiometric signatures[C]//Proc. of the 14th Annual International Conference on Mobile Computing and Networking, 2008. |
17 | 周志文, 黄高明, 王雪宝, 等. 基于联合协作表示的特定辐射源识别[J]. 系统工程与电子技术, 2019, 41 (4): 724- 729. |
ZHOU Z W , HUANG G M , WANG X B , et al. Specific radiation source identification based on joint cooperative representation[J]. Systems Engineering and Electronics, 2019, 41 (4): 724- 729. | |
18 |
PAN Y W , YANG S H , PENG H , et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7, 54425- 54434.
doi: 10.1109/ACCESS.2019.2913759 |
19 | WONG L J, HEADLEY W C, ANDREWS S, et al. Clustering learned CNN features from raw I/Q data for emitter identification[C]//Proc. of the IEEE Military Communications Confe-rence, 2019. |
20 |
ZHANG M , DIAO M , GUO L M . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191 |
21 | WEST N E, O'SHEA T. Deep architectures for modulation recognition[C]//Proc. of the IEEE International Symposium on Dynamic Spectrum Access Networks, 2017. |
22 |
WU Q , FERES C , KUZMENKO D , et al. Deep learning based RF fingerprinting for device identification and wireless security[J]. Electronics Letters, 2018, 54 (24): 1405- 1407.
doi: 10.1049/el.2018.6404 |
23 |
DING L D , WANG S L , WANG F G , et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22 (12): 2591- 2594.
doi: 10.1109/LCOMM.2018.2871465 |
24 | 周东青, 王玉冰, 王星, 等. 基于深度限制波尔兹曼机的辐射源信号识别[J]. 国防科技大学学报, 2016, 38 (6): 136- 141. |
ZHOU D Q , WANG Y B , WANG X , et al. Radiation source signal identification based on depth limit boltzmann machine[J]. Journal of National University of Defense Technology, 2016, 38 (6): 136- 141. | |
25 | 刘高辉, 张晓博. 一种基于深度置信网络的通信辐射源个体识别方法[J]. 电波科学学报, 2020, 35 (3): 395- 403. |
LIU G H , ZHANG X B . An individual identification method of communication radiation source based on deep confidence network[J]. Journal of Radio Science, 2020, 35 (3): 395- 403. | |
26 |
吴子龙, 陈红, 雷迎科, 等. 基于堆栈式LSTM网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2020, 42 (12): 2915- 2923.
doi: 10.3969/j.issn.1001-506X.2020.12.30 |
WU Z L , CHEN H , LEI Y K , et al. Individual identification of communication radiation source based on stack LSTM network[J]. Systems Engineering and Electronics, 2020, 42 (12): 2915- 2923.
doi: 10.3969/j.issn.1001-506X.2020.12.30 |
|
27 | 陈浩, 杨俊安, 刘辉. 基于深度残差适配网络的通信辐射源个体识别[J]. 系统工程与电子技术, 2021, 43 (3): 603- 609. |
CHEN H , YANG J A , LIU H . Individual identification of communication radiation sources based on deep residual adaptive network[J]. Systems Engineering and Electronics, 2021, 43 (3): 603- 609. | |
28 |
BALDINI G , GENTILE C , GIULIANI R , et al. Comparison of techniques for radiometric identification based on deep convolutional neural networks[J]. Electronics Letters, 2019, 55 (2): 90- 92.
doi: 10.1049/el.2018.6229 |
29 | WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19. |
30 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
31 | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1026-1034. |
32 | ZHANG J W , WANG F G , DOBRE O A , et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying Scenarios[J]. IEEE Trans.on Information Forensics and Security, 2017, 11 (6): 1192- 1205. |
[1] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[2] | Pingliang XU, Yaqi CUI, Wei XIONG, Zhenyu XIONG, Xiangqi GU. Generative track segment consecutive association method [J]. Systems Engineering and Electronics, 2022, 44(5): 1543-1552. |
[3] | Tao WU, Lunwen WANG, Jingcheng ZHU. Camouflage image segmentation based on transfer learning and attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 376-384. |
[4] | Tao JIN, Xiaofeng WANG, Runlan TIAN, Xindong ZHANG. Rapid recognition method of radar emitter based on improved 1DCNN+TCN [J]. Systems Engineering and Electronics, 2022, 44(2): 463-469. |
[5] | Yutang MA, Peng SUN, Jieyong ZHANG, Peng WANG, Yunfei YAN, Liang ZHAO. Air group intention recognition method under imbalance samples [J]. Systems Engineering and Electronics, 2022, 44(12): 3747-3755. |
[6] | Yiqiang TANG, Xiaopeng YANG, Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(12): 3863-3870. |
[7] | Ziyan LIU, Shanshan MA, Jing LIANG, Mingcheng ZHU, Lei YUAN. Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system [J]. Systems Engineering and Electronics, 2022, 44(1): 307-312. |
[8] | Bangyan CUI, Runlan TIAN, Dongfeng WANG, Gang CUI, Jingyuan SHI. Radar emitter identification based on attention mechanism and improved CLDNN [J]. Systems Engineering and Electronics, 2021, 43(5): 1224-1231. |
[9] | Shiyang GAO, Huixu DONG, Runlan TIAN, Xindong ZHANG. Radar emitter signal recognition method based on SRNN+Attention+CNN [J]. Systems Engineering and Electronics, 2021, 43(12): 3502-3509. |
[10] | Shiyu SHEN, Xiaodong YE, Hao WANG, Shifei TAO. SAR image speckle suppression method based on muti-scale interactive structure convolutional neural network [J]. Systems Engineering and Electronics, 2021, 43(12): 3526-3532. |
[11] | Ruochen ZHAO, Jingdong WANG, Siyu LIN, Dongze GU. Small building detection algorithm based on convolutional neural network [J]. Systems Engineering and Electronics, 2021, 43(11): 3098-3106. |
[12] | Guangshuai LI, Juan SU, Yihong LI, Xiang LI. Aircraft detection in SAR images based on convolutional neural network and attention mechanism [J]. Systems Engineering and Electronics, 2021, 43(11): 3202-3210. |
[13] | Yifan ZHANG, Shuanghui ZHANG, Yongxiang LIU, Feng JING. Radar HRRP sequence target recognition method of attention mechanism based stacked LSTM network [J]. Systems Engineering and Electronics, 2021, 43(10): 2775-2781. |
[14] | Chunrong HE, Jiang ZHU. Security situation prediction method of GRU neural network [J]. Systems Engineering and Electronics, 2021, 43(1): 258-266. |
[15] | ZHAO Lu-wen, ZHANG Bei-jiang, MIAO Zhi-min, LI Guang-xia, LIU Bo. Carrier frequency offset estimation algorithm for burst and low SNR signal [J]. Systems Engineering and Electronics, 2015, 37(12): 2848-2852. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||