Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (1): 1-9.doi: 10.12305/j.issn.1001-506X.2022.01.01
• Electronic Technology • Next Articles
Yidi ZHANG, Yuebin WANG, Peizhi WANG, Qin YANG, Qiyong LU, Jianqiu ZHANG*, Dan LI
Received:
2020-06-29
Online:
2022-01-01
Published:
2022-01-19
Contact:
Jianqiu ZHANG
CLC Number:
Yidi ZHANG, Yuebin WANG, Peizhi WANG, Qin YANG, Qiyong LU, Jianqiu ZHANG, Dan LI. A method for detecting the number of signal sources with constant false alarm[J]. Systems Engineering and Electronics, 2022, 44(1): 1-9.
Table 1
Relation between the number of Gaussian distribution in Gaussian mixture model and the achieved false alarm rate of the proposed algorithm"
高斯混合分布 | 虚警率 | |||||||||||
0.01 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.99 | |
c=2 | 0.007 | 0.058 | 0.111 | 0.211 | 0.311 | 0.407 | 0.493 | 0.572 | 0.654 | 0.752 | 0.899 | 1.000 |
c=3 | 0.006 | 0.056 | 0.108 | 0.209 | 0.306 | 0.406 | 0.507 | 0.584 | 0.665 | 0.757 | 0.891 | 1.000 |
c=5 | 0.005 | 0.056 | 0.108 | 0.208 | 0.306 | 0.406 | 0.502 | 0.592 | 0.674 | 0.763 | 0.886 | 1.000 |
c=10 | 0.005 | 0.055 | 0.108 | 0.206 | 0.305 | 0.404 | 0.503 | 0.595 | 0.681 | 0.768 | 0.884 | 1.000 |
Table 2
Relation between SNR and the achieved false alarm rate of the proposed algorithm"
SNR/dB | 虚警率 | |||||||||||
0.01 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.99 | |
0 | 0.005 | 0.055 | 0.108 | 0.208 | 0.307 | 0.406 | 0.503 | 0.591 | 0.675 | 0.763 | 0.886 | 1.000 |
10 | 0.012 | 0.050 | 0.098 | 0.203 | 0.308 | 0.409 | 0.505 | 0.592 | 0.673 | 0.763 | 0.888 | 1.000 |
30 | 0.031 | 0.050 | 0.102 | 0.211 | 0.316 | 0.412 | 0.496 | 0.576 | 0.657 | 0.755 | 0.901 | 1.000 |
Table 3
Relation between SNR and the achieved false alarm rate of the proposed approximation algorithm"
SNR/dB | 虚警率 | |||||||||||
0.01 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.99 | |
0 | 0.019 | 0.076 | 0.128 | 0.213 | 0.289 | 0.364 | 0.442 | 0.526 | 0.624 | 0.754 | 0.950 | 1.000 |
10 | 0.032 | 0.070 | 0.112 | 0.189 | 0.264 | 0.342 | 0.424 | 0.516 | 0.626 | 0.776 | 0.974 | 1.000 |
30 | 0.033 | 0.033 | 0.037 | 0.066 | 0.067 | 0.099 | 0.206 | 0.516 | 0.992 | 1.000 | 1.000 | 1.000 |
1 |
MARIS E . A resampling method for estimating the signal subspace of spatio-temporal EEG/MEG data[J]. IEEE Trans.on Biomedical Engineering, 2003, 50 (8): 935- 949.
doi: 10.1109/TBME.2003.814293 |
2 |
NICOLI M , SIMEONE O , SPAGNOLINI U . Multislot estimation of frequency-selective fast-varying channels[J]. IEEE Trans.on Communications, 2003, 51 (8): 1337- 1347.
doi: 10.1109/TCOMM.2003.815067 |
3 |
CHANG C I , DU Q . Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J]. IEEE Trans.on Geoscience and Remote Sensing, 2004, 42 (3): 608- 619.
doi: 10.1109/TGRS.2003.819189 |
4 | STOICA P, NEHORAI A. MUSIC, maximum likelihood and Cramer-Rao bound[C]//Proc. of the International Conference on Acoustics, Speech, and Signal Processing, 1988: 2296-2299. |
5 |
BAI J , NG S . Determining the number of factors in approximate factor models[J]. Econometrica, 2002, 70 (1): 191- 221.
doi: 10.1111/1468-0262.00273 |
6 |
MIDDLETON L P , SATCHELL S E . Deriving the arbitrage pricing theory when the number of factors is unknown[J]. Quantitative Finance, 2001, 1 (5): 502- 508.
doi: 10.1088/1469-7688/1/5/302 |
7 |
NADAKUDITI R R , EDELMAN A . Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples[J]. IEEE Trans.on Signal Processing, 2008, 56 (7): 2625- 2638.
doi: 10.1109/TSP.2008.917356 |
8 | BIENVENU G, KOPP L. Adaptivity to background noise spatial coherence for high resolution passive methods[C]//Proc. of the Acoustics, Speech, and Signal Processing, 1980, 5: 307-310. |
9 |
IORDACHE M D , BIOUCAS D J M , PLAZA A , et al. MUSIC-CSR: hyperspectral unmixing via multiple signal classification and collaborative sparse regression[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (7): 4364- 4382.
doi: 10.1109/TGRS.2013.2281589 |
10 |
PAULRAJ A , ROY R , KAILATH T . A subspace rotation approach to signal parameter estimation[J]. Proceeding of the IEEE, 1986, 74 (7): 1044- 1046.
doi: 10.1109/PROC.1986.13583 |
11 |
ROY R , KAILATH T . ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1989, 37 (7): 984- 995.
doi: 10.1109/29.32276 |
12 | STONE J V . Independent component analysis: a tutorial introduction[M]. Massachusetts: Massachusetts Institute of Technology Press, 2004. |
13 | BURGES C J C . Dimension reduction: a guided tour[J]. Foundations and Trends in Machine Learning, 2010, 2 (4): 275- 365. |
14 | WOLD S , ESBENSEN K , GELADI P . Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2 (3): 37- 52. |
15 |
YANG Y Z , ZHANG W , PENG Z F , et al. Multicomponent signal analysis based on polynomial chirplet transform[J]. IEEE Trans.on Industrial Electronics, 2013, 60 (9): 3948- 3956.
doi: 10.1109/TIE.2012.2206331 |
16 |
HAN K , NEHORAI A . Nested vector-sensor array processing via tensor modeling[J]. IEEE Trans.on Signal Processing, 2014, 62 (10): 2542- 2553.
doi: 10.1109/TSP.2014.2314437 |
17 |
AKAIKE H . A new look at the statistical model identification[J]. IEEE Trans.on Automatic Control, 1974, 19 (6): 716- 723.
doi: 10.1109/TAC.1974.1100705 |
18 |
WAX M , KAILATH T . Detection of signals by information theoretic criteria[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1985, 33 (2): 387- 392.
doi: 10.1109/TASSP.1985.1164557 |
19 |
RISSANEN J . Modeling by shortest data description[J]. Automatica, 1978, 14 (5): 465- 471.
doi: 10.1016/0005-1098(78)90005-5 |
20 |
WAX M , ZISKIND I . Detection of the number of coherent signals by the MDL principle[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1989, 37 (8): 1190- 1196.
doi: 10.1109/29.31267 |
21 | RADOI E , QUINQUIS A . A new method for estimating the number of harmonic components in noise with application in high resolution radar[J]. EURASIP Journal on Applied Signal Processing, 2004, (8): 1177- 1188. |
22 |
YIN Y , KRISHNAIAH P . On some nonparametric methods for detection of the number of signals[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1987, 35 (11): 1533- 1538.
doi: 10.1109/TASSP.1987.1165063 |
23 |
WONG K M , ZHANG Q T , REILLY J P , et al. On information theoretic criteria for determining the number of signals in high resolution array processing[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1990, 38 (11): 1959- 1971.
doi: 10.1109/29.103097 |
24 |
WU Q , FUHRMANN D R . A parametric method for determining the number of signals in narrow-band direction finding[J]. IEEE Trans.on Signal Processing, 1991, 39 (8): 1848- 1857.
doi: 10.1109/78.91155 |
25 | DJURIC P M. Model selection based on asymptotic Bayes theory[C]//Proc. of the Statistical Signal and Array Processing, 1994. |
26 |
BISHOP W B , DJURIC P M . Model order selection of damped sinusoids in noise by predictive densities[J]. IEEE Trans.on Signal Processing, 1996, 44 (3): 611- 619.
doi: 10.1109/78.489034 |
27 | QUINLAN A , BARBOT J P , LARZABAL P , et al. Model order selection for short data: an exponential fitting test (EFT)[J]. EURASIP Journal on Applied Signal Processing, 2007, (1): 71953- 71953. |
28 |
DI A . Multiple source location-A matrix decomposition approach[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing, 1985, 33 (5): 1086- 1091.
doi: 10.1109/TASSP.1985.1164700 |
29 |
LIAVAS A P , REGALIA P A . On the behavior of information theoretic criteria for model order selection[J]. IEEE Trans.on Signal Processing, 2001, 49 (8): 1689- 1695.
doi: 10.1109/78.934138 |
30 |
HE Z , CICHOCKI A , XIE S , et al. Detecting the number of clusters in n-way probabilistic clustering[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2010, 32 (11): 2006- 2021.
doi: 10.1109/TPAMI.2010.15 |
31 | ROHLING H . Radar CFAR thresholding in clutter and multiple target situations[J]. IEEE Trans.on Aerospace and Electronic Systems, 1983, (4): 608- 621. |
32 |
JAIN A K . Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31 (8): 651- 666.
doi: 10.1016/j.patrec.2009.09.011 |
33 | HARTIGAN J A , WONG M A . Algorithm AS 136: a K-means clustering algorithm[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979, 28 (1): 100- 108. |
34 |
LIKAS A , VLASSIS N , VERBEEK J J . The global K-means clustering algorithm[J]. Pattern Recognition, 2003, 36 (2): 451- 461.
doi: 10.1016/S0031-3203(02)00060-2 |
35 | POOR H V . An introduction to signal detection and estimation[M]. 2nd ed London: Springer-Verlag, 1988. |
36 | STOICA P , MOSES R L . Introduction to spectral analysis[M]. New York, NJ: Prentice Hall, 1997. |
37 |
KAY S M , MARPLE S L . Spectrum analysis—a modern perspective[J]. Proc.of the IEEE, 1981, 69 (11): 1380- 1419.
doi: 10.1109/PROC.1981.12184 |
38 | GUERCI J R . Space-time adaptive processing for radar[M]. London: Artech House, 2014. |
39 |
SCARGLE J D . Studies in astronomical time series analysis. Ⅱ-Statistical aspects of spectral analysis of unevenly spaced data[J]. The Astrophysical Journal, 1982, 263, 835- 853.
doi: 10.1086/160554 |
40 |
BABU P , STOICA P , LI J , et al. Analysis of radial velocity data by a novel adaptive approach[J]. The Astronomical Journal, 2010, 139 (2): 783- 795.
doi: 10.1088/0004-6256/139/2/783 |
41 | GOLUB G , PEREYRA V . Separable nonlinear least squares: the variable projection method and its applications[J]. Inverse Problems, 2003, 19 (2): 3172- 3184. |
42 |
STOICA P , BABU P , LI J . New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data[J]. IEEE Trans.on Signal Processing, 2011, 59 (1): 35- 71.
doi: 10.1109/TSP.2010.2086452 |
43 | WILSON R . Multiresolution Gaussian mixture models: theory and application[J]. Department of Computer Science, 2000, 142 (35): 1212- 1215. |
44 |
DEMPSTER A P , LAIRD N M , RUBIN D B . Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39 (1): 1- 22.
doi: 10.1111/j.2517-6161.1977.tb01600.x |
45 |
OZKAN H , OZKAN F , KOZAT S S . Online anomaly detection under Markov statistics with controllable type-I error[J]. IEEE Trans.on Signal Processing, 2016, 64 (6): 1435- 1445.
doi: 10.1109/TSP.2015.2504345 |
[1] | Lei WANG, Zhiyong ZHANG, Weigui ZENG, Silei CAO, Tianhe ZHANG. An improved GMM clustering based on data field and decision graph [J]. Systems Engineering and Electronics, 2022, 44(9): 2743-2751. |
[2] | Jianfeng YANG, Heye XIAO, Liang LI, Junqiang BAI, Weihao DONG. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism [J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539. |
[3] | Haolun GU, Guorong ZHAO, Jinbo YAO, Chao GAO. Cross layer MAC protocol design of NNSs based on graded nodes [J]. Systems Engineering and Electronics, 2022, 44(7): 2329-2340. |
[4] | Jun MA, Jingyu YANG, Xi WU. Evaluation of operational system of systems effectiveness based on pre-clustering active semi-supervised learning [J]. Systems Engineering and Electronics, 2022, 44(6): 1889-1896. |
[5] | Zhongkai ZHAO, Hao GONG, Ran ZHANG. Radiation source signal detection method based on ordered statistical filtering and binary accumulation [J]. Systems Engineering and Electronics, 2022, 44(4): 1085-1092. |
[6] | Pengyu CAO, Chengzhi YANG, Limeng SHI, Hongchao WU. Unknown radar signal processing based on PSO-DBSCAN and SCGAN [J]. Systems Engineering and Electronics, 2022, 44(4): 1158-1165. |
[7] | Haibin WANG, Xin GUAN, Xiao YI. Method of target grouping based on interval number clustering [J]. Systems Engineering and Electronics, 2022, 44(2): 577-583. |
[8] | Bowen YU, Lin YU, Ming LYU, Jie ZHANG. Target threat assessment model based on M-ANFIS-PNN [J]. Systems Engineering and Electronics, 2022, 44(10): 3155-3163. |
[9] | Jiali FAN, Shaobing TIAN, Kui HUANG, Xingdong ZHU. Multi-scale object detection algorithm for aircraft carrier surface based on Faster R-CNN [J]. Systems Engineering and Electronics, 2022, 44(1): 40-46. |
[10] | Gang YANG, Xusheng WU, Pan SUN, Hao ZHU, Sheng XIONG. Partition of line replaceable units in complex equipment based on performance [J]. Systems Engineering and Electronics, 2021, 43(8): 2174-2180. |
[11] | Yue LYU, Aiwu YANG, Zhanwu LI, Zhifei XI. Research on the construction method of air combat decision knowledge [J]. Systems Engineering and Electronics, 2021, 43(7): 1866-1874. |
[12] | Jiaqi ZHANG, Haihong TAO, Xiushe ZHANG. Multi-sensor multi-frame detection algorithm based on measurement plots space clustering [J]. Systems Engineering and Electronics, 2021, 43(6): 1533-1540. |
[13] | Qian MA, Huanxin ZOU, Meilin LI, Fei CHENG, Shitian HE. Super pixel cooperative segmentation algorithm for bi-temporal SAR image based on SNIC [J]. Systems Engineering and Electronics, 2021, 43(5): 1198-1209. |
[14] | Wei SHI, Honglan HUANG, Yanghe FENG, Zhong LIU. Subsampling oriented active learning method for multi-category classification problem [J]. Systems Engineering and Electronics, 2021, 43(3): 700-708. |
[15] | Weiqiang YU, Fei WANG, Ping SUN, Jianjiang ZHOU, Jun CHEN. RF stealth optimization of airborne radar signal parametersunder clutter background [J]. Systems Engineering and Electronics, 2021, 43(11): 3194-3201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||