Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (2): 584-592.doi: 10.12305/j.issn.1001-506X.2021.02.34
• Reliability • Previous Articles
Zezhou WANG(), Yunxiang CHEN(), Zhongyi CAI*(), Huachun XIANG(), Lili WANG()
Received:
2020-04-20
Online:
2021-02-01
Published:
2021-03-16
Contact:
Zhongyi CAI
E-mail:350276267@qq.com;cyx87793@163.com;afeuczy@163.com;xhc09260926@163.com;8574886@qq.com
CLC Number:
Zezhou WANG, Yunxiang CHEN, Zhongyi CAI, Huachun XIANG, Lili WANG. Equipment remaining useful lifetime online prediction based on accelerated degradation modeling with the proportion relationship[J]. Systems Engineering and Electronics, 2021, 43(2): 584-592.
Table 3
Conversion of degraded data"
Y(Y*) | t/h | t*/h |
0.000 0 | 0.00 | 0.00 |
2.092 0×10-4 | 500 | 21 026.700 0 |
4.030 0×10-4 | 666.7 | 28 037.001 8 |
1.888 8×10-4 | 833.3 | 35 043.098 2 |
5.050 0×10-4 | 1 083.3 | 45 556.448 2 |
3.316 0×10-4 | 1 333.30 | 56 069.798 2 |
1.530 0×10-4 | 2 083.30 | 87 609.848 2 |
4.030 0×10-4 | 2 333.30 | 98 123.198 2 |
5.510 0×10-4 | 2 583.30 | 108 636.548 2 |
1.020 0×10-4 | 2 833.30 | 119 149.898 2 |
9.642 0×10-4 | 3 083.30 | 129 663.248 2 |
2.576 0×10-3 | 3 333.30 | 140 176.600 0 |
Table 4
Prediction results of remaining useful lifetime"
t*/h | 真实剩余寿命/h | M1 | M2 | M3 | |||||
剩余寿命预测值/h | 95%置信区间 | 剩余寿命预测值/h | 95%置信区间 | 剩余寿命预测值/h | 95%置信区间 | ||||
21 027 | 119 150 | 111 061 | [123 441, 95 484] | 139 540 | [151 791, 124 622] | 96 472 | [106 116, 84 853] | ||
28 037 | 112 140 | 104 000 | [116 156, 88 791] | 132 220 | [144 113, 117 731] | 89 522 | [99 028, 78 159] | ||
35 043 | 105 134 | 98 595 | [110 447, 84 066] | 126 655 | [138 206, 112 613] | 84 177 | [93 319, 73 434] | ||
45 556 | 94 621 | 89 528 | [100 603, 76 191] | 117 262 | [128166, 104 344] | 75 253 | [83 672, 65 559] | ||
56 070 | 84 107 | 79 755 | [90 366, 67 134] | 106 839 | [117 338, 94 500] | 65 826 | [73 828, 56 897] | ||
87 610 | 52 567 | 51 308 | [60 244, 41 344] | 75 080 | [84 263, 64 969] | 39 384 | [45 675, 32 681] | ||
98 123 | 42 054 | 40 298 | [48 628, 31 106] | 61 714 | [70 481, 52 369] | 29 805 | [35 438, 23 822] | ||
108 637 | 31 540 | 32 186 | [39 769, 24 019] | 51 352 | [59 456, 42 919] | 23 100 | [28 153, 17 916] | ||
119 150 | 21 027 | 22 992 | [29 925, 15 553] | 38 727 | [46 069, 31 303] | 15 851 | [20 278, 11 419] | ||
129 663 | 10 514 | 13 494 | [19 884, 6 891] | 24 418 | [30 909, 18 309] | 8 756 | [12 600, 4 922] |
1 | DAWN A , JOO H C , HO K N . Prediction of remaining useful life under different conditions using accelerated life testing data[J]. Journal of Mechanical Science & Technology, 2018, 32 (6): 2497- 2507. |
2 | LIU X P , WU Z Y , CUI D J , et al. A modeling method of stochastic parameters' inverse Gauss process considering measurement error under accelerated degradation test[J]. Mathematical Problems in Engineering, 2019, 9752920. |
3 |
PANG Z N , HU C H , SI X S , et al. Nonlinear step-stress accelerated degradation modeling and remaining useful life estimation considering multiple sources of variability[J]. IEEE Access, 2019, 7, 124558- 124575.
doi: 10.1109/ACCESS.2019.2933854 |
4 | KIM M Y , CHU D J , LEE Y K , et al. Residual lifetime assessment of cold-reheater pipe in coal-fired power plant through accelerated degradation test[J]. Reliability Engineering & System Safety, 2019, 188, 330- 335. |
5 |
PANG Z N , HU C H , SI X S , et al. A review on modeling and analysis of accelerated degradation data for reliability assessment[J]. Microelectronics Reliability, 2020, 107, 113602.
doi: 10.1016/j.microrel.2020.113602 |
6 |
YAO J , XU M G , ZHONG W Q . Research of step-down stress accelerated degradation data assessment method of a certain type of missile tank[J]. Chinese Journal of Aeronautics, 2012, 25 (6): 917- 924.
doi: 10.1016/S1000-9361(11)60462-7 |
7 | WANG L Z , PAN R , LI X Y , et al. A Bayesian reliability eva-luation method with integrated accelerated degradation testing and field information[J]. Reliability Engineering & System Safety, 2013, 112, 38- 47. |
8 |
CHEN W H , LIU J , GAO L , et al. Step-stress accelerated degradation test modeling and statistical analysis methods[J]. Chinese Journal of Mechanical Engineering, 2013, 26 (6): 1154- 1159.
doi: 10.3901/CJME.2013.06.1154 |
9 |
CAI M , YANG D , TIAN K , et al. Step-stress accelerated testing of high-power LED lamps based on subsystem isolation method[J]. Microelectron Reliability, 2015, 55 (9-10): 1784- 1789.
doi: 10.1016/j.microrel.2015.06.147 |
10 | 盖炳良, 滕克难, 王浩伟, 等. 基于加速因子不变原则的加速度计可靠性分析[J]. 中国惯性技术学报, 2018, 26 (6): 141- 146. |
GAI B L , TENG K N , WANG H W , et al. Reliability analysis for accelerometers based on invariant principle of acceleration factor[J]. Journal of Chinese Inertial Technology, 2018, 26 (6): 141- 146. | |
11 | 唐圣金, 郭晓松, 周召发, 等. 步进应力加速退化试验的建模与剩余寿命估计[J]. 机械工程学报, 2014, 50 (16): 33- 40. |
TANG S J , GUO X S , ZHOU Z F , et al. Step stress accelerated degradation process modeling and remaining useful life estimation[J]. Journal of Mechanical Engineering, 2014, 50 (16): 33- 40. | |
12 | TANG S J , GUO X S , YU C Q , et al. Accelerated degradation tests modeling based on the nonlinear Wiener process with random effects[J]. Mathematical Problems in Engineering, 2014, 560726. |
13 |
LIAO C M , TSENG S T . Optimal design for step-stress acce-lerated degradation tests[J]. IEEE Trans.on Reliability, 2006, 55 (1): 59- 66.
doi: 10.1109/TR.2005.863811 |
14 | HAO S H , YANG J , BERENGUER C . Nonlinear step-stress accelerated degradation modelling considering three sources of variability[J]. Reliability Engineering & System Safety, 2018, 172, 207- 215. |
15 |
蔡忠义, 郭建胜, 陈云翔, 等. 基于步进加速退化建模的剩余寿命在线预测[J]. 系统工程与电子技术, 2018, 40 (11): 2605- 2610.
doi: 10.3969/j.issn.1001-506X.2018.11.31 |
CAI Z Y , GUO J S , CHEN Y X , et al. Remaining lifetime online prediction based on step-stress accelerated degradation mode-ling[J]. Systems Engineering and Electronics, 2018, 40 (11): 2605- 2610.
doi: 10.3969/j.issn.1001-506X.2018.11.31 |
|
16 |
WANG H W , XU T X , WANG W Y . Remaining life prediction based on wiener processes with ADT prior information[J]. Quality and Reliability Engineering International, 2016, 32 (3): 753- 765.
doi: 10.1002/qre.1788 |
17 |
WANG H , MA X B , ZHAO Y . An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction[J]. Mechanical Systems and Signal Processing, 2019, 127, 370- 387.
doi: 10.1016/j.ymssp.2019.03.019 |
18 |
周源泉, 翁朝曦, 叶喜涛. 论加速系数与失效机理不变的条件(Ⅰ)——寿命型随机变量的情况[J]. 系统工程与电子技术, 1996, 18 (1): 55- 67.
doi: 10.3321/j.issn:1001-506X.1996.01.008 |
ZHOU Y Q , WENG Z X , YE X T . Study on accelerated factor and condition for constant failure mechanism (Ⅰ)-The case for lifetime is a random variable[J]. Systems Engineering and Electronics, 1996, 18 (1): 55- 67.
doi: 10.3321/j.issn:1001-506X.1996.01.008 |
|
19 |
周源泉, 翁朝曦, 叶喜涛. 论加速系数与失效机理不变的条件(Ⅱ)──失效为计数过程的情况[J]. 系统工程与电子技术, 1996, 18 (3): 68- 75.
doi: 10.3321/j.issn:1001-506X.1996.03.011 |
ZHOU Y Q , WENG Z X , YE X T . Study on accelerated factor and condition for constant failure mechanism (Ⅱ)-The case for failure follows counting process[J]. Systems Engineering and Electronics, 1996, 18 (3): 68- 75.
doi: 10.3321/j.issn:1001-506X.1996.03.011 |
|
20 |
HE D J , TAO M Z . Statistical analysis for the doubly accelerated degradation Wiener model: an objective Bayesian approach[J]. Applied Mathematical Modelling, 2020, 77, 378- 391.
doi: 10.1016/j.apm.2019.07.045 |
21 |
PENG C Y , TSENG S T . Progressive-stress accelerated degradation test for highly-reliable products[J]. IEEE Trans.on Reliability, 2010, 59 (1): 30- 37.
doi: 10.1109/TR.2010.2040769 |
22 |
LU C , MEEKER W . Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35 (2): 161- 174.
doi: 10.1080/00401706.1993.10485038 |
[1] | Geng XU, Yongxu HE, Yonggang ZHANG. Inertial-frame-based transfer alignment using Rodriguez parameters [J]. Systems Engineering and Electronics, 2022, 44(9): 2903-2913. |
[2] | Haoran SHI, Faxing LU, Jiangxin QI, Guang YANG. Cooperative target tracking of UAVs based on aided beacon [J]. Systems Engineering and Electronics, 2022, 44(7): 2302-2310. |
[3] | Guang ZHAI, Yanxin WANG, Yiyong SUN. Cooperative tracking filtering technology of multi-target based on low orbit satellite constellation [J]. Systems Engineering and Electronics, 2022, 44(6): 1957-1967. |
[4] | Yiping DONG, Ning LIU, Zhong SU, Jingxiao WANG, Hongyang BAI. Integrated navigation method of high-speed spinning flying bodybased on AEKF [J]. Systems Engineering and Electronics, 2022, 44(6): 1977-1983. |
[5] | Wenhua LI, Lixin WANG, Qiang SHEN, Can LI, Zongshou WU. MEMS-INS/GNSS/VO integrated navigation method based on robust EKF [J]. Systems Engineering and Electronics, 2022, 44(6): 1994-2000. |
[6] | Qi WANG, Zhizhong LIAO, Fei YAN. Algorithm for countering velocity gate pull-off jamming of radar seeker based on probability data association [J]. Systems Engineering and Electronics, 2022, 44(2): 448-454. |
[7] | Yi LIU, Xiaoxiong ZHOU, Guangjun CHENG. High dynamic carrier tracking technology in frequency hopping systems [J]. Systems Engineering and Electronics, 2022, 44(2): 677-683. |
[8] | Zhaoqiang SUN, Zhigui WANG, Fei MENG, Luyu LI, Zhong YU, Yan CHEN. Ballistic target tracking filter design based on EKF and ballistic equations [J]. Systems Engineering and Electronics, 2022, 44(10): 3207-3212. |
[9] | Pingan ZHANG, Wei WANG, Min GAO, Yi WANG. Research on SR-CH∞KF for projectile attitude measurement [J]. Systems Engineering and Electronics, 2022, 44(1): 262-269. |
[10] | Heliang YUAN, Tian JIN, Jiaqing QU, Hongli LYU. Processing technology of discontinuous satellite navigation signal under rotating condition [J]. Systems Engineering and Electronics, 2021, 43(9): 2573-2580. |
[11] | Shuguang SUN, Qixin WEN. Aircraft height optimization algorithm of integrated navigation in terminal area based on height anomaly compensation [J]. Systems Engineering and Electronics, 2021, 43(9): 2612-2619. |
[12] | Yuexin ZHAO, Wangdong QI, Peng LIU, En YUAN, Bing XU. Quadratic constraint Kalman filter algorithm for three dimensional AoA target tracking [J]. Systems Engineering and Electronics, 2021, 43(8): 2263-2272. |
[13] | Chunhui LI, Jian MA, Yongjian YANG, Bingsong XIAO, Youwei DENG, Tao SHENG. Adaptive square-root cubature Kalman filter algorithm based on amending [J]. Systems Engineering and Electronics, 2021, 43(7): 1824-1830. |
[14] | Shuang CONG, Kun ZHANG. Online quantum state estimation optimization algorithm based on Kalman filter [J]. Systems Engineering and Electronics, 2021, 43(6): 1636-1643. |
[15] | Baojie CAI, Lei SHAO. Robust filtering algorithm based on three discriminant domain and least squares fitting [J]. Systems Engineering and Electronics, 2021, 43(5): 1346-1353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||