Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (2): 574-583.doi: 10.12305/j.issn.1001-506X.2021.02.33
• Reliability • Previous Articles Next Articles
Chen MENG1(), Huahui YANG1(), Cheng WANG1(), Zheng MA2()
Received:
2020-04-29
Online:
2021-02-01
Published:
2021-03-16
CLC Number:
Chen MENG, Huahui YANG, Cheng WANG, Zheng MA. Review on data-driven fault diagnosis for electronic components and units level of weapon system[J]. Systems Engineering and Electronics, 2021, 43(2): 574-583.
1 | 侯晓东, 王永攀, 杨江平, 等. 基于状态的武器电子装备故障预测研究综述[J]. 系统工程与电子技术, 2018, 40 (2): 360- 367. |
HOU X D , WANG Y P , YANG J P , et al. Research summary of weapon electronic equipment fault prediction based on state[J]. Systems Engineering and electronics, 2018, 40 (2): 360- 367. | |
2 | 文成林, 吕菲亚, 包哲静, 等. 基于数据驱动的微小故障诊断方法综述[J]. 自动化学报, 2016, 42 (9): 1285- 1299. |
WEN C L , LYU F Y , BAO Z J , et al. A review of data driven-based incipient fault diagnosis[J]. Acta Automatica Sinica, 2016, 42 (9): 1285- 1299. | |
3 | 文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42 (1): 234- 248. |
WEN C L , LYU F Y . Review on deep learning based fault diagnosis[J]. Journal of Electronic & Information Technology, 2020, 42 (1): 234- 248. | |
4 | 苗建国, 王剑宇, 张恒, 等. 无人机故障诊断技术研究进展概述[J]. 仪器仪表学报, 2020, 41 (9): 56- 59. |
MIAO J G , WANG J Y , ZHANG H , et al. Review of the development of fault diagnosis technology for unmanned aerial vehicle[J]. Chinese Journal of Scientific Instrument, 2020, 41 (9): 56- 59. | |
5 |
ZHANG W T , YANG D , WANG H C . Data-driven methods for predictive maintenance of industrial equipment: a survey[J]. IEEE Systems Journal, 2019, 13 (3): 2213- 2227.
doi: 10.1109/JSYST.2019.2905565 |
6 |
XU Y , SUN Y M , WAN J F , et al. Industrial big data for fault diagnosis: taxonomy, review, and applications[J]. IEEE Access, 2017, 5, 17368- 17380.
doi: 10.1109/ACCESS.2017.2731945 |
7 |
CHANG B L , YANG R F , GUO C X , et al. A new application of optimized random forest algorithms in intelligent fault location of rudders[J]. IEEE Access, 2019, 7, 94276- 94283.
doi: 10.1109/ACCESS.2019.2926109 |
8 |
CAI J Y , HAN C H , MENG Y F . Analog circuit testability for fault diagnosis[J]. Tsinghua Science and Technology, 2007, 12 (S1): 270- 274.
doi: 10.1016/S1007-0214(07)70123-2 |
9 |
ZHANG H , LIANG J , ZHANG Z Y . Active fault tolerant control of adaptive cruise control system considering vehicle-borne millimeter wave radar sensor failure[J]. IEEE Access, 2020, 8, 11228- 11240.
doi: 10.1109/ACCESS.2020.2964947 |
10 |
TIDRIRI K , CHATTI N , VERRON S , et al. Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: a review of researches and future challenges[J]. Annual Review in Control, 2016, 42, 63- 81.
doi: 10.1016/j.arcontrol.2016.09.008 |
11 |
FREIRE N M A , ESTIMA J O , CARDOSO A J M . A voltage-based approach without extra hardware for open-circuit fault diagnosis in closed-loop PWM AC regenerative drives[J]. IEEE Trans.on Industrial Electronics, 2014, 61 (9): 4960- 4970.
doi: 10.1109/TIE.2013.2279383 |
12 |
WANG L , PAN J , GAO Y F , et al. Incipient fault diagnosis of limit switch based on a ARMA model[J]. Measurement, 2019, 135, 473- 480.
doi: 10.1016/j.measurement.2018.11.080 |
13 | MAHAPATRO A , KHILAR P M . Fault diagnosis in wireless sensor networks: a survey[J]. Communications Surveys & Tutorials, 2013, 15 (4): 2000- 2026. |
14 |
YIN S , DING S X , XIE X C , et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Trans.on Industrial Electronics, 2014, 61 (11): 6418- 6428.
doi: 10.1109/TIE.2014.2301773 |
15 | DAI X W , GAO Z W . From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis[J]. IEEE Trans.on Industrial Informatics, 2018, 9 (4): 2226- 2238. |
16 | MOSTAFA M Z , KHATER H A , RIZK M R , et al. GPS/DVL/MEMS-INS smartphone sensors integrated method to enhance USV navigation system based on adaptive DSFCF[J]. IET Radar, Sonar & Navigation, 2017, 13 (10): 1616- 1627. |
17 | BU J , SUN R , BAI H Y , et al. Integrated method for the UAV navigation sensor anomaly detection[J]. IET Radar Sonar & Navigation, 2017, 11 (5): 847- 853. |
18 |
SHAN G L , XU G G , QIAO C L . A non-myopic scheduling method of radar sensors for maneuvering target tracking and radiation control[J]. Defence Technology, 2020, 16 (1): 242- 250.
doi: 10.1016/j.dt.2019.10.001 |
19 |
SHIROKOV L E . Integrated aircraft control for rendezvous of aircraft-launched missiles with radiating targets[J]. Journal of Computer and Systems Sciences International Volume, 2014, 53 (2): 291- 304.
doi: 10.1134/S1064230714020142 |
20 |
MINOR C P , STEINHURST D A , JOHNSON K J , et al. A full-scale prototype multisensor system for damage control and situatio-nal awareness[J]. Fire Technology, 2010, 46 (2): 437- 469.
doi: 10.1007/s10694-009-0103-y |
21 | GUO C J , LI F , TIAN Z , et al. Intelligent active fault-tolerant system for multi-source integrated navigation system based on deep neural network[J]. Neural Computing and Applications, 2019, 32, 16857- 16874. |
22 | XU H W , LIAN B W . Fault detection for multi-source integrated navigation system using fully convolutional neural network[J]. IET Radar Sonar & Navigation, 2018, 12 (7): 774- 782. |
23 |
SUN R , CHENG Q , WANG G Y , et al. A novel online data-driven algorithm for detecting UAV navigation sensor faults[J]. Sensors, 2017, 17 (10): 2243.
doi: 10.3390/s17102243 |
24 | FRAVOLINI M L , CORE G D , PAPA U , et al. Data-driven schemes for robust fault detection of air data system sensors[J]. IEEE Trans.on Control Systems Technology, 2017, 27 (1): 234- 248. |
25 |
SAMARA P A , FOUSKITAKIS G N , SAKELLARIOU J S , et al. A statistical method for the detection of sensor abrupt faults in aircraft control systems[J]. IEEE Trans.on Control Systems Technology, 2008, 16 (4): 789- 798.
doi: 10.1109/TCST.2007.903109 |
26 | GOU B , XU Y , XIA Y , et al. An intelligent time-adaptive data-driven method for sensor fault diagnosis in induction motor drive system[J]. IEEE Trans.on Industrial Electronics, 2018, 66 (12): 9817- 9827. |
27 | DONG L , JATSKEVICH J , HUANG Y , et al. Fault diagnosis and signal reconstruction of hall sensors in brushless permanent magnet motor drives[J]. IEEE Trans.on Energy Conversion, 2015, 31 (1): 118- 131. |
28 |
BINU D , KARIYAPPA B S . A survey on fault diagnosis of analog circuits: taxonomy and state of the art[J]. AEU-International Journal of Electronics and Communications, 2017, 73, 68- 83.
doi: 10.1016/j.aeue.2017.01.002 |
29 |
ZHANG T W , LI T J . A novel approach of analog circuit fault diagnosis utilizing RFT noise estimation[J]. Analog Integrated Circuits and Signal Processing, 2019, 98 (3): 517- 526.
doi: 10.1007/s10470-018-1351-x |
30 |
ZHAO G Q , LIU X Y , ZHANG B , et al. A novel approach for analog circuit fault diagnosis based on deep belief network[J]. Measurement, 2018, 121, 170- 178.
doi: 10.1016/j.measurement.2018.02.044 |
31 | ABDERRAZAK A , NACERDINE B , ABDESSLAM B , et al. An accurate classifier based on adaptive neuro-fuzzy and features selection techniques for fault classification in analog circuits[J]. Integration, 2019, 64, 50- 59. |
32 |
YANG H H , MENG C , WANG C . Data-driven feature extraction for analog circuit fault diagnosis using 1-D convolutional neural network[J]. IEEE Access, 2020, 8, 18305- 18315.
doi: 10.1109/ACCESS.2020.2968744 |
33 | GAN X S , GAO W M , DAI Z , et al. Research on WNN soft fault diagnosis for analog circuit based on adaptive UKF algorithm[J]. Applied Soft Computing, 2016, 50, 252- 259. |
34 |
YUAN Z J , HE Y G , YUAN L F , et al. An efficient feature extraction approach based on manifold learning for analogue circuits fault diagnosis[J]. Analog Integrated Circuits and Signal Processing, 2020, 102 (1): 237- 252.
doi: 10.1007/s10470-018-1377-0 |
35 |
XIA J H , GUO Y B , DAI B J , et al. Sensor fault diagnosis and system reconfiguration approach for an electric traction PWM rectifier based on sliding mode observer[J]. IEEE Trans.on Industry Applications, 2017, 53 (5): 4768- 4778.
doi: 10.1109/TIA.2017.2715816 |
36 |
WU F , ZHAO J . A real-time multiple open-circuit fault diagnosis method in voltage-source-inverter fed vector controlled drives[J]. IEEE Trans.on Power Electronics, 2016, 31 (2): 1425- 1437.
doi: 10.1109/TPEL.2015.2422131 |
37 | WU F , ZHAO J , LIU Y , et al. Primary source inductive energy analysis based real-time multiple open-circuit fault diagnosis in two-level three-phase PWM boost rectifier[J]. IEEE Trans.on Power Electronics, 2017, 33 (4): 3411- 3424. |
38 |
CHENG S , LI W , DING R J , et al. Fault diagnosis and fault-tolerant control scheme for open-circuit faults in three-stepped bridge converters[J]. IEEE Trans.on Power Electronics, 2017, 32 (3): 2203- 2214.
doi: 10.1109/TPEL.2016.2558491 |
39 |
YAN H , XU Y X , CAI F Y , et al. PWM-VSI fault diagnosis for a PMSM drive based on the fuzzy logic approach[J]. IEEE Trans.on Power Electronics, 2019, 34 (1): 759- 768.
doi: 10.1109/TPEL.2018.2814615 |
40 |
YANG C , GUI W H , CHEN Z W , et al. Voltage difference residual-based open-circuit fault diagnosis approach for three-level converters in electric traction systems[J]. IEEE Trans.on Power Electronics, 2020, 35 (3): 3012- 3028.
doi: 10.1109/TPEL.2019.2924487 |
41 |
HU M , WANG H , HU G , et al. Soft fault diagnosis for analog circuits based on slope fault feature and BP neural networks[J]. Tsinghua Science and Technology, 2007, 12 (S1): 26- 31.
doi: 10.1016/S1007-0214(07)70079-2 |
42 |
RUAN S , ZHOU Y K , YU F L , et al. Dynamic multiple-fault diagnosis with imperfect tests[J]. IEEE Trans.on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009, 39 (6): 1224- 1236.
doi: 10.1109/TSMCA.2009.2025572 |
43 |
SINGH S , KODALI A , CHOI K , et al. Dynamic multiple fault diagnosis: mathematical formulations and solution techniques[J]. IEEE Trans.on Systems Man and Cybernetics-Part a Systems and Humans, 2009, 39 (1): 160- 176.
doi: 10.1109/TSMCA.2008.2007986 |
44 |
WU F , ZHAO J . Current similarity analysis based open-circuit fault diagnosis for two-level three-phase PWM rectifier[J]. IEEE Trans.on Power Electronics, 2017, 32 (5): 3935- 3945.
doi: 10.1109/TPEL.2016.2587339 |
45 |
VONG C M , WONG P K , IP W F . A new framework of simultaneous-fault diagnosis using pairwise probabilistic multi-label classification for time-dependent patterns[J]. IEEE Trans.on Industrial Electronics, 2013, 60 (8): 3372- 3385.
doi: 10.1109/TIE.2012.2202358 |
46 |
CHOQUEUSE V , BENBOUZID M E H , AMIRAT Y , et al. Diagnosis of three-phase electrical machines using multidimensional demodulation techniques[J]. IEEE Trans.on Industrial Electronics, 2012, 59 (4): 2014- 2023.
doi: 10.1109/TIE.2011.2160138 |
47 | YANG T , PEN H B , WANG Z X , et al. Feature knowledge based fault detection of induction motors through the analysis of stator current data[J]. IEEE Trans.on Instrumentation & Measurement, 2016, 65 (3): 549- 558. |
48 |
LEE J M , YOO C K , LEE I B . Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14 (5): 467- 485.
doi: 10.1016/j.jprocont.2003.09.004 |
49 |
MURADORE R . A PLS-based statistical approach for fault detection and isolation of robotic manipulators[J]. IEEE Trans.on Industrial Electronics, 2012, 59 (8): 3167- 3175.
doi: 10.1109/TIE.2011.2167110 |
50 |
YIN S , ZHU X P , KAYNAK O . Improved PLS focused on key-performance-indicator-related fault diagnosis[J]. IEEE Trans.on Industrial Electronics, 2015, 62 (3): 1651- 1658.
doi: 10.1109/TIE.2014.2345331 |
51 |
ZHONG K , HAN M , QIU T , et al. Fault diagnosis of complex processes using sparse kernel local fisher discriminant analy-sis[J]. IEEE Trans.on Neural Networks and Learning Systems, 2020, 31 (5): 1581- 1591.
doi: 10.1109/TNNLS.2019.2920903 |
52 | FENG J , WANG J , ZHANG H G , et al. Fault diagnosis method of joint fisher discriminant analysis based on the local and global manifold learning and its kernel version[J]. IEEE Trans.on Automation Science & Engineering, 2016, 13 (1): 122- 133. |
53 |
DELPHA C , DIALLO D , SAMROUT H A , et al. Multiple incipient fault diagnosis in three-phase electrical systems using multivariate statistical signal processing[J]. Engineering Applications of Artificial Intelligence, 2018, 73, 68- 79.
doi: 10.1016/j.engappai.2018.04.007 |
54 |
PILARIO K E S , CAO Y . Canonical variate dissimilarity analysis for process incipient fault detection[J]. IEEE Trans.on Industrial Informatics, 2018, 14 (12): 5308- 5315.
doi: 10.1109/TII.2018.2810822 |
55 |
SHI J Y , HE Q J , WANG Z L . GMM clustering-based decision trees considering fault rate and cluster validity for analog circuit fault diagnosis[J]. IEEE Access, 2019, 7, 140637- 140650.
doi: 10.1109/ACCESS.2019.2943380 |
56 |
YIN S , HUANG Z H . Performance monitoring for vehicle suspension system via fuzzy positivistic C-means clustering based on accelerometer measurements[J]. IEEE/ASME Trans.on Mechatronics, 2015, 20 (5): 2613- 2620.
doi: 10.1109/TMECH.2014.2358674 |
57 |
YIN S , ZHU X P , JING C . Fault detection based on a robust one class support vector machine[J]. Neurocomputing, 2014, 145, 263- 268.
doi: 10.1016/j.neucom.2014.05.035 |
58 | HE Y , DU C Y , LI C B , et al. Sensor fault diagnosis of superconducting fault current limiter with saturated iron core based on SVM[J]. IEEE Trans.on Applied Superconductivity, 2014, 24 (5): 5602805. |
59 |
ZIDI S , MOULAHI T , ALAYA B . Fault detection in wireless sensor networks through SVM classifier[J]. IEEE Sensors Journal, 2018, 18 (1): 340- 347.
doi: 10.1109/JSEN.2017.2771226 |
60 | SUO M L , ZHU B L , AN R M , et al. Data-driven fault diagnosis of satellite power system using fuzzy Bayes risk and SVM[J]. Aerospace Science & Technology, 2019, 84, 1092- 1105. |
61 |
CHEN P , YUAN L F , HE Y G , et al. An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis[J]. Neurocompu-ting, 2016, 211, 202- 211.
doi: 10.1016/j.neucom.2015.12.131 |
62 |
KURAKU N V P , HE Y , SHI T , et al. Fuzzy logic based open-circuit fault diagnosis in IGBT for CMLI fed PMSM drive[J]. Microelectronics Reliability, 2019, 100-101, 113415.
doi: 10.1016/j.microrel.2019.113415 |
63 |
KUMAR A , SINGH A P . Fuzzy classifier for fault diagnosis in analog electronic circuits[J]. ISA Transactions, 2013, 52 (6): 816- 824.
doi: 10.1016/j.isatra.2013.06.006 |
64 |
YU W X , SUI Y , WANG J . The faults diagnostic analysis for analog circuit based on FA-TM-ELM[J]. Journal of Electronic Testing, 2016, 32 (4): 459- 465.
doi: 10.1007/s10836-016-5597-x |
65 |
GAN X S , QU H , MENG X W , et al. Research on ELM soft fault diagnosis of analog circuit based on KSLPP feature extraction[J]. IEEE Access, 2019, 7, 92517- 92527.
doi: 10.1109/ACCESS.2019.2923242 |
66 |
MAIDEN Y , JERVIS B W , DUTTON N , et al. Diagnosis of multifaults in analogue circuits using multilayer perceptrons[J]. IEE Proceedings-Circuits Devices and Systems, 1997, 144 (3): 149- 154.
doi: 10.1049/ip-cds:19971146 |
67 |
YU S , JERVIS B W , ECKERSALL K R , et al. Diagnosis of CMOS op-amps with gate oxide short faults using multilayer perceptrons[J]. IEEE Trans.on Computer-Aided Design of Integrated Circuits and Systems, 1997, 16 (8): 930- 935.
doi: 10.1109/43.644623 |
68 | SONG P , HE Y Z , CUI W J . Statistical property feature extraction based on FRFT for fault diagnosis of analog circuits[J]. Analog Integrated Circuits & Signal Processing, 2016, 87 (3): 427- 436. |
69 |
LUO H , WANG Y R , CUI J . A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor[J]. Expert Systems with Applications, 2011, 38 (8): 10554- 10561.
doi: 10.1016/j.eswa.2011.02.087 |
70 |
JEONG K , CHOI S B , CHOI H . Sensor fault detection and isolation using a support vector machine for vehicle suspension systems[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (4): 3852- 3863.
doi: 10.1109/TVT.2020.2977353 |
71 |
JAN S U , LEE Y D , SHIN J , et al. Sensor fault classification based on support vector machine and statistical time-domain features[J]. IEEE Access, 2017, 5, 8682- 8690.
doi: 10.1109/ACCESS.2017.2705644 |
72 |
JIANG Q C , YAN S F , YAN X F , et al. Data-driven two-dimensional deep correlated representation learning for nonlinear batch process monitoring[J]. IEEE Trans.on Industrial Informatics, 2020, 16 (4): 2839- 2848.
doi: 10.1109/TII.2019.2952931 |
73 |
ZHANG C L , HE Y G , YUAN L F , et al. Analog circuit incipient fault diagnosis method using DBN based features extraction[J]. IEEE Access, 2018, 6, 23053- 23064.
doi: 10.1109/ACCESS.2018.2823765 |
74 |
SHI T C , HE Y G , WANG T , et al. Open switch fault diagnosis method for PWM voltage source rectifier based on deep learning approach[J]. IEEE Access, 2019, 7, 66595- 66608.
doi: 10.1109/ACCESS.2019.2917311 |
75 |
WANG Z S , LIU L , ZHANG H G . Neural network-based model-free adaptive fault-tolerant control for discrete-time nonlinear systems with sensor fault[J]. IEEE Trans.on Systems, Man, and Cybernetics, 2017, 47 (8): 2351- 2362.
doi: 10.1109/TSMC.2017.2672664 |
76 | 陈彧赟, 侯博文, 何章鸣, 等. 数据驱动的复杂系统非预期故障诊断通用过程模型[J]. 国防科技大学学报, 2017, 39 (6): 126- 133. |
CHEN Y Y , HOU B W , HE Z M , et al. General process mo-del for unanticipated fault diagnosis of complex system based on data driven[J]. Journal of National University of Defense Technology, 2017, 39 (6): 126- 133. |
[1] | Sheng GAO, Guangfu MA, Yanning GUO. Fast reconstruction of multiple faults based on adaptive unknown input observer [J]. Systems Engineering and Electronics, 2022, 44(7): 2364-2373. |
[2] | Zhaoguo HOU, Huawei WANG, Liang ZHOU, Qiang FU. Fault diagnosis of rotating machinery based on improved deep residual network [J]. Systems Engineering and Electronics, 2022, 44(6): 2051-2059. |
[3] | Jia HUANG, Sijiang CHANG. Data-driven method based impact time and impact angle control guidance law [J]. Systems Engineering and Electronics, 2022, 44(10): 3213-3220. |
[4] | Zhiwei CHEN, Jing WANG, Changchao GU, Jianchun ZHANG, Jilong ZHONG. Performance availability and resilience analysis of weapon system of systems considering dynamic reconfiguration [J]. Systems Engineering and Electronics, 2021, 43(8): 2347-2354. |
[5] | Ruifeng LI, Aiqiang XU, Weichao SUN, Shuyou WANG. Recommendation method for avionics feature selection algorithm basedon meta-learning [J]. Systems Engineering and Electronics, 2021, 43(7): 2011-2020. |
[6] | Yuqi CHEN, Tingxue XU, Jianping HAO, Cheng LU, Zhiqiang LI. Task capability dependency analysis of weapon system of systems based on FDN [J]. Systems Engineering and Electronics, 2021, 43(6): 1721-1728. |
[7] | Li WANG, Ziqi LIU. Fault diagnosis of analog circuit for WPA-IGA-BP neural network [J]. Systems Engineering and Electronics, 2021, 43(4): 1133-1143. |
[8] | Jinling DAI, Aiqiang XU. Local multiple kernel extreme learning machine fault diagnosis model with dynamic fuzzy clustering for avionics [J]. Systems Engineering and Electronics, 2021, 43(3): 637-646. |
[9] | Liu YANG, Weigang ZHU, Shouye LYU, Shuang MA. Waveform unit extraction method for non-cooperative multi-function radar [J]. Systems Engineering and Electronics, 2021, 43(10): 2843-2850. |
[10] | Yunfei MA, Xisheng JIA, Huajun BAI, Chiming GUO, Shuangchuan WANG. Fault diagnosis of compressed vibration signal based on 1-dimensional CNN with optimized parameters [J]. Systems Engineering and Electronics, 2020, 42(9): 1911-1919. |
[11] | Bo LI, Lin ZHANG, Wenfeng WANG, Guannan WANG. Fault feature extraction method based on Park-HHT [J]. Systems Engineering and Electronics, 2020, 42(12): 2944-2952. |
[12] | YOU Yaqian, JIANG Jiang, SUN Jianbin, ZHAO Danling, YANG Kewei. Evidential network-based evaluation method of contribution to weapon system-of-systems [J]. Systems Engineering and Electronics, 2019, 41(8): 1780-1788. |
[13] | GE Bingfeng, LI Jichao, ZHAO Danling, YANG Kewei, TAN Yuejin. Meta-path based link prediction approach for weapon system-of-systems combat networks [J]. Systems Engineering and Electronics, 2019, 41(5): 1028-1033. |
[14] | YAO Tianle, TAO Fenghe, HU Qiwei, QI Ziyuan, WEN Liang. Assessment of weapon system combat capability of main battle tank based on multi attribute utility [J]. Systems Engineering and Electronics, 2019, 41(2): 358-364. |
[15] | DOU Yajie, XU Xiangqian, ZHOU Zhexuan, XIA Boyuan, YANG Kewei. Analysis of system portfolio selection and typical military application [J]. Systems Engineering and Electronics, 2019, 41(12): 2754-2762. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||