Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (2): 399-409.doi: 10.12305/j.issn.1001-506X.2021.02.15
• Systems Engineering • Previous Articles Next Articles
Boyuan XIA(), Kewei YANG(
), Zhiwei YANG(
), Xiaoke ZHANG(
), Danling ZHAO(
)
Received:
2020-04-07
Online:
2021-02-01
Published:
2021-03-16
CLC Number:
Boyuan XIA, Kewei YANG, Zhiwei YANG, Xiaoke ZHANG, Danling ZHAO. Multi-objective optimization of equipment portfolio based on kill-web evaluation[J]. Systems Engineering and Electronics, 2021, 43(2): 399-409.
Table 2
Communication relationship among the red nodes (example 1)"
r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 | r10 | r11 | r12 | |
r1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r2 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r3 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
r4 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
r5 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
r6 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
r7 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
r8 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
r9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
r10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
r11 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
r12 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Table 3
Command relationship among the red nodes (example 1)"
r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 | r10 | r11 | r12 | |
r1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r2 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r3 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
r4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
r6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
r8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
r9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
r12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 11
Test set of objective weights"
序号 | 权重值 | ||
1 | 0.1 | 0.1 | 0.8 |
2 | 0.1 | 0.2 | 0.7 |
3 | 0.1 | 0.3 | 0.6 |
4 | 0.1 | 0.4 | 0.5 |
5 | 0.1 | 0.5 | 0.4 |
6 | 0.1 | 0.6 | 0.3 |
7 | 0.1 | 0.7 | 0.2 |
8 | 0.1 | 0.8 | 0.1 |
9 | 0.2 | 0.1 | 0.7 |
10 | 0.2 | 0.2 | 0.6 |
11 | 0.2 | 0.3 | 0.5 |
12 | 0.2 | 0.4 | 0.4 |
13 | 0.2 | 0.5 | 0.3 |
14 | 0.2 | 0.6 | 0.2 |
15 | 0.2 | 0.7 | 0.1 |
16 | 0.3 | 0.1 | 0.6 |
17 | 0.3 | 0.2 | 0.5 |
18 | 0.3 | 0.3 | 0.4 |
19 | 0.3 | 0.4 | 0.3 |
20 | 0.3 | 0.5 | 0.2 |
21 | 0.3 | 0.6 | 0.1 |
22 | 0.4 | 0.1 | 0.5 |
23 | 0.4 | 0.2 | 0.4 |
24 | 0.4 | 0.3 | 0.3 |
25 | 0.4 | 0.4 | 0.2 |
26 | 0.4 | 0.5 | 0.1 |
27 | 0.5 | 0.1 | 0.4 |
28 | 0.5 | 0.2 | 0.3 |
29 | 0.5 | 0.3 | 0.2 |
30 | 0.5 | 0.4 | 0.1 |
31 | 0.6 | 0.1 | 0.3 |
32 | 0.6 | 0.2 | 0.2 |
33 | 0.6 | 0.3 | 0.1 |
34 | 0.7 | 0.1 | 0.2 |
35 | 0.7 | 0.2 | 0.1 |
36 | 0.8 | 0.1 | 0.1 |
1 | 雷子欣, 李元平. 美国"马赛克战"作战概念解析[J]. 军事文摘, 2019, (2): 6- 10. |
LEI Z X , LI Y P . An analysis of the concept of American "Mosaic War"[J]. Military Digest, 2019, (2): 6- 10. | |
2 | MATTIS J. National defense strategy[EB/OL].[2020-03-03]. https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf. |
3 | 飞行总动员航天网.诺斯罗普·格鲁曼使用全球鹰无人机解决F-22与F-35战机通信代差问题[EB/OL].[2020-03-03]. https://www.sohu.com/a/169761629_476262, 2017-09-05. |
General aviation aerospace network. Northrop Grumman used the global hawk to solve the communication gap between f-22 and f-35 aircraft[EB/OL].[2020-03-03]. https://www.sohu.com/a/169761629_476262, 2017-09-05. | |
4 | 吴勤. 美军分布式作战概念发展分析[J]. 军事文摘, 2016, (7): 44- 47. |
WU Q . Development analysis of distributed combat concept of the US army[J]. Military Digest, 2016, (7): 44- 47. | |
5 | 叶秋玲,汪强.美军发布多域作战概念最新1.5版本[EB/OL].[2020-03-04]. http://www.fx361.com/page/2019/0312/4993189.shtml, 2019-03-12. |
YE Q L, WANG Q. U.S. release the latest version 1.5 of the multi-domain operational concepts[EB/OL].[2020-03-04]. http://www.fx361.com/page/2019/0312/4993189.shtml. | |
6 | WILLIAMS D B. DARPA's "mosaic warfare" concept turns complexity into asymmetric advantage[EB/OL].[2020-03-05]. http://tony.9shi.cf/index.php?q=aHR0cHM6Ly93d3cuZmlmdGhkb21haW4uY29tL2RvZC8yMDE3LzA4LzE0L2RhcnBhcy1tb3NhaWMtd2FyZmFyZS1jb25jZXB0LXR1cm5zLWNvbXBsZXhpdHktaW50by1hc3ltbWV0cmljLWFkdmFudGFnZS8. |
7 |
TERVONEN T , LIESIÖ J , SALO A . Modeling project preferences in multi-attribute portfolio decision analysis[J]. European Journal of Operational Research, 2017, 263 (1): 225- 239.
doi: 10.1016/j.ejor.2017.04.051 |
8 |
SEFAIR J A , MÉNDEZ C Y , BABAT O , et al. Linear solution schemes for mean-semi variance project portfolio selection problems: an application in the oil and gas industry[J]. Omega, 2017, 68, 39- 48.
doi: 10.1016/j.omega.2016.05.007 |
9 |
MOHAGHEGHI V , MOUSAVI S M , VAHDANI B , et al. R&D project evaluation and project portfolio selection by a new interval type -2 fuzzy optimization approach[J]. Neural Computing and Applications, 2017, 28 (12): 3869- 3888.
doi: 10.1007/s00521-016-2262-3 |
10 |
LIU Y , LIU Y K . Distributionally robust fuzzy project portfolio optimization problem with interactive returns[J]. Applied Soft Computing, 2017, 56, 655- 668.
doi: 10.1016/j.asoc.2016.09.022 |
11 |
SILVA C G , MEIDANIS J , MOURA A V , et al. An improved visualization-based approach for project portfolio selection[J]. Computers in Human Behavior, 2017, 73, 685- 696.
doi: 10.1016/j.chb.2016.12.083 |
12 |
SCHIFFELS S , FLIEDNER T , KOLISCH R . Human behavior in project portfolio selection: insights from an experimental study[J]. Decision Sciences, 2018, 49 (6): 1061- 1087.
doi: 10.1111/deci.12310 |
13 |
JAFARZADEH H , AKBARI P , ABEDIN B . A methodology for project portfolio selection under criteria prioritisation, uncertainty and projects interdependency-combination of fuzzy QFD and DEA[J]. Expert Systems with Applications, 2018, 110, 237- 249.
doi: 10.1016/j.eswa.2018.05.028 |
14 |
FIALA P . Project portfolio designing using data envelopment analysis and De Novo optimization[J]. Central European Journal of Operations Research, 2018, 26 (4): 847- 859.
doi: 10.1007/s10100-018-0571-6 |
15 | KOROTIN V , POPOV V , TOLOKONSKY A , et al. A multi-criteria approach to selecting an optimal portfolio of refinery upgrade projects under margin and tax regime uncertainty[J]. Omega, 2017, 72 (C): 50- 58. |
16 |
TINOCO M A C , DUTRA C C , RIBEIRO J L D , et al. An integrated model for evaluation and optimisation of business project portfolios[J]. European Journal of Industrial Engineering, 2018, 12 (3): 442- 463.
doi: 10.1504/EJIE.2018.092010 |
17 |
LI J C , GE B F , JIANG J , et al. High-end weapon equipment portfolio selection based on a heterogeneous network model[J]. Journal of Global Optimization, 2020, 78, 743- 761.
doi: 10.1007/s10898-018-0687-1 |
18 | XIONG J , ZHOU Z B , LIAO T J , et al. A multi-objective approach for weapon selection and planning problems in dynamic environments[J]. Journal of Industrial & Management Optimization, 2017, 13 (3): 1189- 1211. |
19 |
XIA B Y , ZHAO Q S , YANG K W , et al. Scenario-based modeling and solving research on robust weapon project planning problems[J]. Journal of Systems Engineering and Electronics, 2019, 30 (1): 85- 99.
doi: 10.21629/JSEE.2019.01.09 |
20 | VAHID M , MEYSAM M S , BEHAM V , et al. A mathematical modeling approach for high and new technology-project portfolio selection under uncertain environments[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32 (6): 4069- 4079. |
21 | 张骁雄, 葛冰峰, 姜江, 等. 面向能力需求的武器装备组合规划模型与算法[J]. 国防科技大学学报, 2017, 39 (1): 102- 108. |
ZHANG X X , GE B F , JIANG J , et al. Adapt to the need of the ability of weapon and equipment combination programming model and algorithm[J]. Journal of National University of Defense Technology, 2017, 39 (1): 102- 108. | |
22 | 豆亚杰, 徐向前, 周哲轩, 等. 系统组合选择方法及典型军事应用[J]. 系统工程与电子技术, 2019, 41 (12): 2754- 2762. |
DOU Y J , XU X Q , ZHOU Z X , et al. Analysis of system portfolio selection and typical military application[J]. Systems Engineering and Electronics, 2019, 41 (12): 2754- 2762. | |
23 | 杨克巍, 杨志伟, 谭跃进, 等. 面向体系贡献率的装备体系评估方法研究综述[J]. 系统工程与电子技术, 2019, 41 (2): 311- 321. |
YANG K W , YANG Z W , TAN Y J , et al. Review of the evaluation methods of equipment system of systems facing the contribution rate[J]. Systems Engineering and Electronics, 2019, 41 (2): 311- 321. | |
24 | 夏博远, 赵青松, 张骁雄, 等. 基于动态能力需求的鲁棒性武器系统组合决策[J]. 系统工程与电子技术, 2017, 39 (6): 1280- 1286. |
XIA B Y , ZHAO Q S , ZHANG X X , et al. Robust weapon system portfolio decision based on dynamic capability requirements[J]. Systems Engineering and Electronics, 2017, 39 (6): 1280- 1286. | |
25 | 刘鹏, 赵丹玲, 谭跃进, 等. 面向多任务的武器装备体系贡献度评估方法[J]. 系统工程与电子技术, 2019, 41 (8): 1763- 1770. |
LIU P , ZHAO D L , TAN Y J , et al. Multi-task oriented contribution evaluation method of weapon equipment system of systems[J]. Systems Engineering and Electronics, 2019, 41 (8): 1763- 1770. | |
26 | 李际超, 吴俊, 谭跃进, 等. 基于有向自然连通度的作战网络抗毁性研究[J]. 复杂系统与复杂性科学, 2015, 12 (4): 25- 31. |
LI J C , WU J , TAN Y J , et al. Robustness of combat networks based on directed natural connectivity[J]. Complex Systems and Complexity Science, 2015, 12 (4): 25- 31. | |
27 | LI J C , ZHAO D L , JAING J , et al. Capability oriented equipment contribution analysis in temporal combat networks[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems,, 2015, 12 (4): 25- 31. |
28 | LI J C , JIANG J , YANG K , et al. Research on functional robustness of heterogeneous combat networks[J]. IEEE Systems Journal, 2018, 13 (2): 1487- 1495. |
29 | ARYO D. Dijkstra algorithm[EB/OL].[2020-02-12]. https://www.mathworks.com/matlabcentral/fileexchange/36140-dijkstra-algorithm. |
30 |
DEB K , PRATAP A , AGARWAL S , et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Trans.on Evolutionary Computation, 2002, 6 (2): 182- 197.
doi: 10.1109/4235.996017 |
31 | SHIH H S , SHYUR H J , LEE E S . An extension of TOPSIS for group decision making[J]. Mathematical & Computer Modelling, 2007, 45 (7): 801- 813. |
[1] | Shiying YAN, Kefei YAN, Wei FANG, Hengyang LU. Large-scale multi-objective algorithm based on neighborhood adaptive of differential evolution [J]. Systems Engineering and Electronics, 2022, 44(7): 2112-2124. |
[2] | Qian LIU, Yunjun LU, Kebin CHEN, Mengyao HAN, Liang GUO. Combat task decomposition EVA method based on binary constraints of task subject [J]. Systems Engineering and Electronics, 2022, 44(7): 2201-2210. |
[3] | Bo LI, Jiahao ZHOU, Minmin LIU, Pinchao ZHU. Feature selection for welding defect assessment based on improved NSGA3 [J]. Systems Engineering and Electronics, 2022, 44(7): 2211-2218. |
[4] | Xudong SHI, Boyuan CHENG, Kun HUANG, Zhangang YANG. Risk assessment of aircraft IDG based on fuzzy TOPSIS-FMEA [J]. Systems Engineering and Electronics, 2022, 44(6): 2060-2064. |
[5] | Zhiwei YANG, Xuexin XIE, Shuwan LI. Analysis of coherent processing capability of pulse width-FMpolarity agile waveform [J]. Systems Engineering and Electronics, 2022, 44(4): 1139-1147. |
[6] | Yao TAN, Qian ZHAO, Wenfeng WANG, Bo GUO, Ping JIANG. Type I censored reliability acceptence test plan for Weibull distributed products by considering expert information [J]. Systems Engineering and Electronics, 2022, 44(4): 1409-1416. |
[7] | Siyu DU, Yinghui QUAN, Minghui SHA, Wen FANG, Mengdao XING. Waveform optimization for SFA radar based on evolutionary particle swarm optimization [J]. Systems Engineering and Electronics, 2022, 44(3): 834-840. |
[8] | Jinli MENG, Yafeng WANG, Jingbei YANG, Ning WANG. Spatial adaptive filtering of polarization agility jamming [J]. Systems Engineering and Electronics, 2022, 44(11): 3305-3312. |
[9] | Shuxian DONG, Yinghui QUAN, Minghui SHA, Wen FANG, Mengdao XING. Frequency agile radar combined with intra-pulse frequency coding to resist intermittent sampling jamming [J]. Systems Engineering and Electronics, 2022, 44(11): 3371-3379. |
[10] | Yantao WANG, Zheng YANG. Propagation and control improvement of flight operation risk network [J]. Systems Engineering and Electronics, 2021, 43(9): 2544-2552. |
[11] | Liupengcheng YUAN, Zhemei FANG, Jianbo WANG, Xiaozhen QIN. CRC-MATE based method for system-of-systems architecture alternative selection [J]. Systems Engineering and Electronics, 2021, 43(8): 2146-2153. |
[12] | Fan ZHU, Kai XIE. Analysis of the characteristic impedance of the transmission line under dual redundancy mechanism [J]. Systems Engineering and Electronics, 2021, 43(8): 2303-2310. |
[13] | Rui ZHANG, Yinghui QUAN, Shengqi ZHU, Yachao LI, Mengdao XING. Microwave correlation imaging method based on improved OMP algorithm for sparse targets [J]. Systems Engineering and Electronics, 2021, 43(7): 1756-1765. |
[14] | Rongwei CUI, Wei HAN, Xichao SU, Liguo WANG, Yujie LIU. Integrated optimization of carrier-based aircraft flight deck operations scheduling and resource configuration for pre-flight preparation stage [J]. Systems Engineering and Electronics, 2021, 43(7): 1884-1893. |
[15] | Wen FANG, Yinghui QUAN, Minghui SHA, Zhixing LIU, Xia GAO, Mengdao XING. Dense false targets jamming suppression algorithm based on frequency agility and waveform entropy [J]. Systems Engineering and Electronics, 2021, 43(6): 1506-1514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||