Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (11): 2513-2519.doi: 10.3969/j.issn.1001-506X.2020.11.13
Previous Articles Next Articles
An XU(), Chunqing GAO(
), Yingxin KOU(
), Zhanwu LI(
), You LI(
)
Received:
2020-01-07
Online:
2020-11-01
Published:
2020-11-05
CLC Number:
An XU, Chunqing GAO, Yingxin KOU, Zhanwu LI, You LI. Autonomous air combat decision of 1vs1 based on BFM method[J]. Systems Engineering and Electronics, 2020, 42(11): 2513-2519.
1 | 黄长强, 唐上钦. 从"阿法狗"到"阿法鹰"——论无人作战飞机智能自主空战技术[J]. 指挥与控制学报, 2016, 2 (3): 261- 264. |
HUANG C Q , TANG S Q . From Alpha Go to Alpha Eagle: on the intelligent autonomous air combat technology for UCAV[J]. Journal of Command and Control, 2016, 2 (3): 261- 264. | |
2 |
IMADO F . Some aspect of a realistic three-dimensional pursuit-evasion game[J]. Journal of Guidance, Control and Dynamics, 1993, 16 (2): 289- 293.
doi: 10.2514/3.21002 |
3 |
BELLMAN R . On the theory of dynamic programming[J]. Proceedings of the National Academy of Sciences of the United States of America, 1952, 38 (8): 716- 719.
doi: 10.1073/pnas.38.8.716 |
4 | 黄长强, 赵克新, 韩邦杰, 等. 一种近似动态规划的无人机机动决策方法[J]. 电子与信息学报, 2018, 40 (10): 2447- 2452. |
HUANG C Q , ZHAO K X , HAN B J , et al. Maneuvering decision-making method of UAV based on approximate dynamic programming[J]. Journal of Electronics & Information Technology, 2018, 40 (10): 2447- 2452. | |
5 |
JAMES S M , JONATHON P H , BRIAN W , et al. Air-combat strategy using approximate dynamic programming[J]. Journal of Guidance Control and Dynamics, 2010, 33 (5): 1641- 1654.
doi: 10.2514/1.46815 |
6 |
AUSTIN F , CARBONE G , HINZ H , et al. Game theory for automated maneuvering during air-to-air combat[J]. Journal of Guidance, Control, and Dynamics, 1990, 13 (6): 1143- 1149.
doi: 10.2514/3.20590 |
7 | 傅莉, 王晓光. 无人战机近距空战微分对策建模研究[J]. 兵工学报, 2012, 10 (10): 1210- 1216. |
FU L , WANG X G . Research on close air combat modeling of differential games for unmanned combat air vehicles[J]. Acta Armamentarii, 2012, 10 (10): 1210- 1216. | |
8 |
CASBEER D W , GARCIA E , PACHTER M . The target differential game with two defenders[J]. Journal of Intelligent and Robotic Systems, 2018, 89, 87- 106.
doi: 10.1007/s10846-017-0563-0 |
9 | GREENWOOD N . A differential game in three dimensions: the aerial dogfight scenario[J]. Journal of Dynamical and Control Systems, 1992, 2 (2): 161- 200. |
10 | PARK H J , LEE B Y , TAHK M J , et al. Differential game-based air combat maneuver generation using scoring function matrix[J]. Journal of Aeronautical and Space Sciences, 2016, 17 (2): 204- 213. |
11 |
MOON J , KIM K , KIM Y . Design of missile guidance law via variable structure control[J]. Journal of Guidance Control and Dynamics, 2001, 24 (4): 659- 664.
doi: 10.2514/2.4792 |
12 | EKLUND J M, SPRINKLE J, KIM H J, et al. Implementing and testing a nonlinear model predictive tracking controller for aerial pursuit/evasion games on a fixed wing aircraft[C]//Proc.of the American Control Conference, 2005: 1509-1514. |
13 | SHIM D H, LEE Y H. Development of a close-range air combat maneuver algorithm for unmanned combat aerial vehicles[C]//Proc.of the Korean Society for Aeronautical and Space Science Spring Conference, 2010: 1-7. |
14 | 钟友武, 柳嘉润, 杨凌宇, 等. 自主近距空战中机动动作库及其综合控制系统[J]. 航空学报, 2008, 29 (S1): 114- 121. |
ZHONG Y W , LIU J R , YANG L Y , et al. Maneuver library and integrated control system for autonomous close in air combat[J]. Acta Aeronautica Et Astronautica Sinica, 2008, 29 (S1): 114- 121. | |
15 | BURGIN G H, SIDOR L B. Rule-based air combat simulation[P]. United States: NASA-CR-4160, 1988. |
16 | 朱可钦, 董彦非. 空战机动动作库设计方式研究[J]. 航空计算技术, 2001, 31 (4): 50- 52. |
ZHU K Q , DONG Y F . Study on the design of air combat maneuver library[J]. Aeronautical Computer Technique, 2001, 31 (4): 50- 52. | |
17 | XIAO L Z, SUN D X, LIU Y W. A combined method based on expert system and BP neural network for UAV systems fault diagnosis[C]//Proc.of the International Conference on Artificial Intelligence and Computational Intelligence, 2010: 3-6. |
18 | MCMANUS J W, CHAPPELL A R, ARBUCKLE P D. Situation assessment in the paladin tactical decision generation system[R]. NASA Langley Technical Report, 2003. |
19 | CHAPPELL A C, MCMANUS J W, GOODRICH K H. Trial maneuver generation and selection in the paladin tactical decision generation system[C]//Proc.of the Astrodynamics Conference, 1992: 1060-1069. |
20 |
VIRTANEN K , KARELAHTI J , RAIVIO . Modeling air combat by a moving horizon influence diagram game[J]. Journal of Guidance Control and Dynamics, 2006, 29 (5): 1080- 1149.
doi: 10.2514/1.17168 |
21 | 左家亮, 杨任农, 张滢, 等. 基于启发式强化学习的空战机动智能决策[J]. 航空学报, 2017, 38 (10): 321168. |
ZUO J L , YANG R N , ZHANG Y , et al. Intelligent decision-making in air combat maneuvering based on heuristic reinforcement learning[J]. Acta Aeronautica Et Astronautica Sinica, 2017, 38 (10): 321168. | |
22 |
ERNEST N , CARROLL D , SCHUMACHER C , et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6 (1)
doi: 10.4172/2167-0374.1000144 |
23 | SMITH R E , DIKE B A , MEHRA R K . Classifier systems in combat: two-sided learning of maneuvers for advanced fighter aircraft[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186 (2/4): 421- 437. |
24 | 张强, 杨任农, 俞利新, 等. 基于Q-network强化学习的超视距空战机动决策[J]. 空军工程大学学报(自然科学版), 2018, 19 (6): 8- 14. |
ZHANG Q , YANG R N , YU L X , et al. BVR air combat maneuvering decision by using Q-network reinforcement learning[J]. Journal of Air Force Engineering University(Natural Science Edition), 2018, 19 (6): 8- 14. | |
25 | KIM H G, SHIN H M, LEE H S, et al. Research on the reinforcement learning-based air combat algorithm[C]//Proc.of the Korean Society for Aeronautical and Space Science Spring Conference, 2017: 1-9. |
26 |
SHIN H M , LEE J H , KIM H G , et al. An autonomous aerial combat framework for two-on-two engagements based on basic fighter maneuvers[J]. Aerospace Science and Technology, 2018, 72, 305- 315.
doi: 10.1016/j.ast.2017.11.014 |
[1] | Tianye SUN, Wei SUN, Jianjun WU. UAV formation rapid assembly method based on improved Quatre algorithm [J]. Systems Engineering and Electronics, 2022, 44(9): 2840-2848. |
[2] | Jing YU, Enmi YONG, Hanyang CHEN, Dong HAO, Xiancai ZHANG. Bi-level mission planning method for multi-cooperative UAV air-to-ground attack [J]. Systems Engineering and Electronics, 2022, 44(9): 2849-2857. |
[3] | Jianfeng YANG, Heye XIAO, Liang LI, Junqiang BAI, Weihao DONG. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism [J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539. |
[4] | Yuanjie LU, Zhimin LIU, Zhixiao SUN, Dong KAN. Model-based integrated evaluation of UAV system architecture [J]. Systems Engineering and Electronics, 2022, 44(4): 1239-1245. |
[5] | Yuanyuan ZHANG, Yang GAO, Peng ZHU, Jintao LIU, Shushan GU. UAV reconnaissance tactical planning based on colored Petri nets [J]. Systems Engineering and Electronics, 2022, 44(3): 900-907. |
[6] | Xuping GU, Daquan TANG. Hierarchical cooperative navigation of UAV swarm based on federated filtering algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 967-976. |
[7] | Xueyong YU, Ye ZHU, Lixiang QIU, Hongbo ZHU. Energy efficient offloading strategy for UAV aided edgecomputing systems [J]. Systems Engineering and Electronics, 2022, 44(3): 1022-1029. |
[8] | Xingjia YANG, Keqing DUAN, Xiang LI, Wei QI. Resolving range ambiguity for cooperative detection using UAV swarms [J]. Systems Engineering and Electronics, 2022, 44(2): 480-489. |
[9] | Xiaowei FU, Jing PAN. Distributed formation control of UAV swarm with dynamic obstacle avoidance [J]. Systems Engineering and Electronics, 2022, 44(2): 529-537. |
[10] | Dou CHEN, Xiuyun MENG. UAV offline path planning based on self-adaptive coyote optimization algorithm [J]. Systems Engineering and Electronics, 2022, 44(2): 603-611. |
[11] | Buhua LIU, Dan DING, Liu YANG, Naiyang XUE, Zhongqian LIU. OFDM data transmission technology of UAV based on deep neural network [J]. Systems Engineering and Electronics, 2022, 44(2): 696-702. |
[12] | Zhipeng WU, Ping ZHANG, Zhen LI, Lei HUANG, Chang LIU, Shuo GAO. Vegetation height inversion method based on light-weighted and small UAV-radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3667-3675. |
[13] | Yujia WANG, Wei FANG, Tao XU, Yingfu YU, Boyuan DENG. Intelligent decision-making model by unmanned aerial vehicles in sea-to-air confrontation based on genetic fuzzy trees [J]. Systems Engineering and Electronics, 2022, 44(12): 3756-3765. |
[14] | Wenqi YANG, Jianhua LU, Xu JIANG, Yuanxin WANG. Design of quadrotor attitude active disturbance rejection controller based on improved ESO [J]. Systems Engineering and Electronics, 2022, 44(12): 3792-3799. |
[15] | Hanyang WANG, Liang CHEN, Hai XU, Jingbo BAI. UAV online trajectory planning based on MOEA/D-ARMS [J]. Systems Engineering and Electronics, 2022, 44(11): 3505-3514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||