1 |
CHEN J , XU S , CHEN Z . Convolutional neural network for classifying space target of the same shape by using RCS time series[J]. IET Radar, Sonar & Navigation, 2018, 12 (11): 1268- 1275.
|
2 |
MA Y , HU M F , LU H Z , et al. Recurrent neural networks for discrimination of exo-atmospheric targets based on infrared radiation signature[J]. Infrared Physics & Technology, 2019, 96 (1): 123- 132.
|
3 |
CHOI I O , PARK S H , KIM M , et al. Efficient discrimination of ballistic targets with micro-motions[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 22 (3): 1- 17.
|
4 |
PERSICO A R , ILIOUDIS C V , CLEMENTE C , et al. Novel classification algorithm for ballistic target based on HRRP frame[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 55 (6): 3168- 3189.
doi: 10.1109/TAES.2019.2905281
|
5 |
柴晶, 刘宏伟, 保铮. 加权KNN分类器在HRRP库外目标拒判中的应用[J]. 系统工程与电子技术, 2010, 32 (4): 718- 723.
|
|
CHAI J , LIU H W , BAO Z . Application of a weighted KNN classifier for HRRP out-of-database target rejection[J]. Systems Engineering and Electronics, 2010, 32 (4): 718- 723.
|
6 |
翟夕阳, 王晓丹, 李睿, 等. 基于二叉树直觉模糊SVM的弹道目标HRRP识别[J]. 火力与指挥控制, 2017, 42 (10): 64- 68.
|
|
ZHAI X Y , WANG X D , LI R , et al. Ballistic target recognition of HRRP based on intuitionistic fuzzy binary tree SVM[J]. Fire Control & Command Control, 2017, 42 (10): 64- 68.
|
7 |
李睿, 王晓丹, 雷蕾, 等. 结合多分类RVM和DS的弹道目标HRRP融合识别方法[J]. 信息与控制, 2017, 46 (1): 65- 71, 102.
|
|
LI R , WANG X D , LEI L , et al. Ballistic target HRRP fusion recognition combining multi-class relevance vector machine and DS[J]. Information and Control, 2017, 46 (1): 65- 71, 102.
|
8 |
WANG Y H , BI X J , CHEN W , et al. Deep forest for radar HRRP recognition[J]. The Journal of Engineering, 2019, 2019 (21): 8018- 8021.
doi: 10.1049/joe.2019.0723
|
9 |
WANG L Y, CUI Z Y, CAO Z J, et al. Fine-grained gesture recognition based on high resolution range profiles of terahertz radar[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2019: 1470-1473.
|
10 |
WANG S X, LI J B, WANG Y H, et al. Radar HRRP target recognition based on gradient boosting decision tree[C]//Proc.of the 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, 2016: 1013-1017.
|
11 |
LIU W B , YUAN J W , ZHANG G , et al. HRRP target recognition based on kernel joint discriminant analysis[J]. Journal of Systems Engineering and Electronics, 2019, 30 (4): 703- 708.
|
12 |
YAN H Q, ZHANG Z H, XIONG G, et al. Radar HRRP recognition based on sparse denoising autoencoder and multi-layer perceptron deep model[C]//Proc.of the 4th International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services, 2016: 283-288.
|
13 |
ZHAO F X , LIU Y X , HUO K , et al. Radar HRRP target recognition based on stacked autoencoder and extreme learning machine[J]. Sensors, 2018, 18 (1): 173.
|
14 |
PAN M , JIANG J , KONG Q P , et al. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (9): 1609- 1613.
doi: 10.1109/LGRS.2017.2726098
|
15 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proc.of the Advances in Neural Information Processing Systems, 2012: 1097-1105.
|
16 |
董志鹏, 王密, 李德仁, 等. 遥感影像目标的尺度特征卷积神经网络识别法[J]. 测绘学报, 2019, 48 (10): 1285- 1295.
|
|
DONG Z P , WANG M , LI D R , et al. Object detection in remote sensing imagery based on convolutional neural networks with suitable scale features[J]. Acta Geodaetica Et Cartographica Sinica, 2019, 48 (10): 1285- 1295.
|
17 |
SRIVASTAVA N , HINTON G , KRIZHEVSKY A , et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15 (1): 1929- 1958.
|
18 |
LUO L C, XIONG Y H, LIU Y, et al. Adaptive gradient methods with dynamic bound of learning rate[EB/OL].[2020-04-22]. https://arxiv.org/abs/1902.09843.
|
19 |
RUDER S. An overview of gradient descent optimization algorithms[EB/OL].[2020-04-22]. http://arxiv.org/abs/1609.04747.
|
20 |
DUCHI J , HAZAN E , SINGER Y . Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12 (7): 2121- 2159.
|