目标运动状态的改变将导致目标跟踪算法精度降低或发散。为了提高机动目标跟踪的跟踪性能,首先,针对当前统计(current statistical, CS)模型中最大加速度固定设置导致模型误差增大的问题,提出了一种自适应CS模型;在自适应CS模型和交互式多模型(interacting multiple model, IMM)的基础上,提出了一种交互式多自适应模型(interacting multiple adaptive model, IMAM),该模型通过采用两个自适应CS模型,能够有效消除目标状态突变造成模型误差急速增大的问题,提高了模型的准确度和适应性。其次,在IMAM的基础上,结合修正卡尔曼滤波(amendatory Kalman filter, AKF)的思想,提出了IMAM-AKF算法,该算法通过修正最终的状态融合估计值,有效地降低了目标机动造成的模型误差,进一步提高了机动目标跟踪的性能。最后,结合自适应渐消卡尔曼滤波(adaptive fading Kalman filter, AFKF)的思想,提出了IMAM-AFAKF算法。仿真结果表明,无论是强机动还是弱机动,IMAM-AFAKF算法都具有较好的跟踪性能。