针对粒子群优化(particle swarm optimization, PSO)算法收敛速度慢、寻优精度低、计算量大、容易陷入局部最优解等问题,首先提出了一种无需越界检测的归一化粒子群优化(normalized particle swarm optimization, NPSO)算法,NPSO算法具有比PSO算法更佳的有效性和稳定性,其优化速度和收敛精度要远远优于PSO算法,且其计算量要比常规PSO算法采用越界检测调整小。其次,结合狼群算法(wolf pack algorithm, WPA)中的游走行为,在二分粒子群优化(dichotomy particle swarm optimization,DPSO)算法的基础上,通过对二分粒子赋予不同的探索方向,提出了一种WPA-DPSO算法,WPA-DPSO算法具有3层寻优的功能,不仅有效加强了粒子的搜索范围,避免了算法陷入局部最优解,而且有效提高了DPSO算法的收敛速度、优化精度、稳定性和有效性。在NPSO算法和WPA-DPSO算法的基础上,提出了一种混合型PSO算法(WPA-NDPSO),从而有效克服了PSO算法早熟收敛、搜索范围不大、容易收敛到局部极值、计算量大等问题。均匀线阵方向图综合实验表明:WPA-NDPSO算法不仅具有较优的收敛速度和优化精度,而且具有较强的稳定性和较高的有效性。