针对非线性系统中不可观测故障参数估计问题,提出基于多重渐消因子强跟踪平方根容积卡尔曼滤波(multiple fading factors strong tracking square-root cubature Kalman filter, MSTSCKF)的状态和参数联合滤波算法。MSTSCKF基于强跟踪滤波器理论框架,通过引入多重渐消因子实时调整增益矩阵,克服平方根容积卡尔曼滤波(square-root cubature Kalman filter, SCKF)在故障参数变化函数未知或者突变时滤波精度下降甚至发散的缺点,并兼具SCKF在非线性拟合精度和数值稳定性等方面的优点。仿真结果表明,相比SCKF和强跟踪无迹卡尔曼滤波(unscented Kalman filter, UKF),本文提出的方法具有更高的估计精度。