针对合成孔径雷达(synthetic aperture radar, SAR)图像目标识别问题, 提出了基于改进的卷积神经网络和数据增强的SAR目标识别方法。首先在训练阶段引入Dropout, 随机删除部分神经元, 增强网络的泛化能力。其次, 在网络中引入L2正则化, 简化模型的同时降低结构风险, 并且能有效地抑制过拟合。然后, 采用Adam优化网络, 提高模型的收敛效率。最后, 采用优选的数据增强方法, 扩充SAR目标数据集, 为网络训练提供更为充足的样本, 进一步提高识别的准确率和模型的泛化性。在运动和静止目标获取与识别(moving and stationary target acquisition and recognition, MSTAR)数据集上进行了实验, 结果表明设计的卷积神经网络识别准确率高, 且具有更好的泛化性。