针对弹道中段目标识别问题,现有的基于高分辨距离像(high resolution range profile, HRRP)的识别方法直接提取一维HRRP(1-dimension HRRP, 1D-HRRP)的整体特征,对局部特征提取能力较弱,且由1D-HRRP数据提取的特征的表达能力有限,为此提出了一种基于深度卷积神经网络(deep convolutional neural network, DCNN)的弹道中段目标HRRP图像识别方法。首先,将1D-HRRP转化为0-1二值图像,从而把数值变化特征转化为图像结构特征;然后,构建DCNN逐层提取图像的局部特征和共性特征并进行识别;最后,结合Dropout和L2正则化双重机制缓解DCNN过拟合问题,利用AdaBound算法提高DCNN训练收敛速度和识别正确率。实验结果表明,所提出的基于HRRP图像的弹道中段目标识别方法比其他12种基于1D-HRRP或二维HRRP(2-dimension HRRP, 2D-HRRP)的识别方法正确率更高,在测试数据集上达到了96.28%,实验结果验证了该方法的有效性。