为了提高最小支撑正交匹配追踪(least support denosing-orthogonal matching pursuit, LSD-OMP)算法的重构精度,缩短重构时间,改善算法性能,提出一种基于多重支撑的正则化正交匹配追踪(multiple support of regularization orthogonal matching pursuit, MS-ROMP)算法。由于LSD-OMP算法仅选择一些原子来定位支撑集,并且无法消除添加到支撑集中的错误原子,因此信号恢复精度降低并且重构时间增加。针对此问题,本文通过改进算法终止条件,引入多重支撑和正则化来改善算法性能,即通过设置阈值,剔除一些错误的原子,并组合一些支持集来定位最佳支持集,从混合信号中分离出源信号,从而更加精确的实现欠定盲源分离。仿真实验验证了该算法的有效性。