基于贝叶斯估计原理,提出了一种贝叶斯逆合成孔径雷达(inverse synthetic aperture radar, ISAR)成像算法。基于最大后验概率准则建立ISAR成像模型,利用回波数据进行统计参数估计,以实现ISAR成像的自适应表征,从而提高ISAR成像的精度。特别是运动误差相位估计和ISAR图像的重构通过求解最优化问题实现,而未考虑误差相位的具体形式,具有较高的鲁棒性。此外,本文方法在低信噪比 (signal-to-noise ratio, SNR)条件下,可以取得良好的聚焦效果,具有较好的噪声抑制能力。最后,贝叶斯估计问题转换为最优化问题进行求解,利用快速傅里叶变换及其逆变换(fast Fourier transform/inversed fast Fourier transform, FFT/IFFT)和矩阵对应点乘(Hadamard乘积)操作,有效提高该算法的效率。基于实测数据的实验验证了本文算法的有效性。