海上编队防空作战中,针对来袭目标威胁评估过程中不确定性因素较多、观测数据易缺失以及已有评估方法难以考虑动态威胁态势的问题,提出了基于离散动态贝叶斯网络云模型(discrete dynamic Bayesian networks cloud, DDBN-Cloud)的威胁评估方法。通过分析来袭目标特征,构建了目标威胁评估体系;为避免节点威胁属性值在小范围内连续变化所引起的重复计算,采用模糊逻辑理论将体系中的连续型变量转化为离散型变量;针对评估过程中指标数据缺失问题,采用前向信息修补算法进行信息预测修补;采用证据可信度对不确定性节点的先验概率进行赋值,使得贝叶斯网络(Bayesian network,BN)参数更贴合实际;最后,利用云模型将得到的威胁评估概率转化为确定的威胁度,实现由定性概念到定量数值的转化,进行威胁排序;仿真实验表明,该方法适用于目标数据缺失时的动态威胁评估,与静态贝叶斯网络云模型(Bayesian networks cloud, BN-Cloud)法和相对熵排序法相比,其结果更合理,具有一定的实用价值。