系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (8): 2829-2840.doi: 10.12305/j.issn.1001-506X.2024.08.30

• 制导、导航与控制 • 上一篇    

基于局部感知的无人艇集群过复杂障碍场方法

刘昊1,2, 张云飞1,*, 赵继成1   

  1. 1. 云洲智能科技股份有限公司, 广东 珠海 519082
    2. 云洲创新科技有限公司深圳研究院, 广东 深圳 518106
  • 收稿日期:2023-01-31 出版日期:2024-07-25 发布日期:2024-08-07
  • 通讯作者: 张云飞
  • 作者简介:刘昊(1983—), 男, 高级工程师, 博士, 主要研究方向为群体智能、集群控制
    张云飞(1984—), 男, 高级工程师, 博士, 主要研究方向为智能科技
    赵继成(1989—), 男, 高级工程师, 硕士, 主要研究方向为无人艇控制算法、集群算法
  • 基金资助:
    珠海市产学研合作项目(ZH22017002210014PWC)

Formation control of unmanned surface vehicle swarm in dense environment based on local perception

Hao LIU1,2, Yunfei ZHANG1,*, Jicheng ZHAO1   

  1. 1. Yunzhou Intelligent Technology Co., Ltd., Zhuhai 519082, China
    2. Shenzhen Research Institute, Yunzhou Innovation Technology Co., Ltd., Shenzhen 518106, China
  • Received:2023-01-31 Online:2024-07-25 Published:2024-08-07
  • Contact: Yunfei ZHANG

摘要:

针对当前基于中央控制策略解决无人艇(unmanned surface vehicle, USV)过复杂障碍场智能化程度不足的问题, 提出一种基于局部感知的USV集群自主决策通过复杂障碍场方法。所提方法采用自组织协同思想, 利用USV的局部感知能力获取周边水域的有效信息, 将自组队形和自主避障决策权交由USV执行, 促使集群自组织通过复杂障碍场并达成无序到有序的队形演化。仿真结果表明, 采用所提方法的集群过复杂障碍场过程明显优于基于人工势场的同类方法。所提方法可在确保生存率前提下自组织实时集群自组队形、自主避障和自适应航行, 对提升集群适应能力具有重要意义。

关键词: 无人艇集群, 局部感知, 复杂障碍场, 自组队形, 安全规避

Abstract:

Aiming at the current problem of insufficient intelligence for unmanned surface vehicle (USV) in solving the problem of dense environment crossing based on the central control strategy, a method of autonomous decision-making of USV swarms dense environment crossing based on local perception is proposed. The proposed method adopts the idea of self-organizing collaboration, uses the local perception ability of the USV to obtain effective information of the surrounding waters, and hands over the self-organizing formation and autonomous obstacle avoidance decision-making power to the USV to promote the swarm self-organization cross the dense environment and achieve the formation evolution from disorder to order. Simulation results show that the process of swarm dense environment crossing using this method is obviously better than similar methods based on artificial potential field. The proposed method can self-organize real-time swarm self-organizing formation, autonomous obstacle avoidance, and adaptive navigation under the premise of ensuring survival rate, which is of great significance for improving swarm adaptability.

Key words: unmanned surface vehicle (USV) swarm, local perception, dense environment, self-organized formation, safe avoidance

中图分类号: