11 |
LIANG Y Z. An automatic detection method for epileptic EEG signals based on empirical mode decomposition and permutation entropy[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023.
|
12 |
杨雨亭. 基于RF特征优选的ISSA-SVM变压器故障诊断方法[D]. 南京: 南京邮电大学, 2023.
|
|
YANG Y T. ISSA-SVM transformer fault diagnosis method based on RF feature selection[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023.
|
13 |
ZHANG S Y, TAN W A, LI Y B. Survey of kernel extreme learning machine kernel function based on the perspective of kernel parameter optimization time[C]//Proc. of the 4th Annual International Conference on Network and Information Systems for Computers, 2018: 430-433.
|
14 |
PARAL P , GHOSH S , CHATTERJEE A , et al. Automatic relevance determination kernel-embedded Gaussian process regression for sonar-based human leg localization with a mobile robot[J]. IEEE Sensors Letters, 2022, 7 (1): 6000504.
|
15 |
DONG W H , LI X F , BI D J , et al. Matern kernel adaptive filtering with Nystrom approximation for indoor localization[J]. IEEE Trans.on Instrumentation and Measurement, 2023,
|
16 |
TRONARP F, KARVONEN T, SARKKA S. Mixture representation of the Matern class with applications in state space approximations and Bayesian quadrature[C]//Proc. of the IEEE 28th International Workshop on Machine Learning for Signal Processing, 2018.
|
17 |
LIU K L , LI Y , HU X S , et al. Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithiumion batteries[J]. IEEE Trans.on Industrial Informatics, 2019, 16 (6): 3767- 3777.
|
18 |
TAGHAVIFAR H , MARDANI A . Gaussian process with automatic relevance determination predictive model for energy management of electric direct-drive wheels: experimental validation[J]. IEEE Trans.on Vehicular Technology, 2023, 73 (2): 1910- 1917.
|
19 |
LIU T, CHAI W, WANG C C. Soft-sensors based on Gaussian process regression for wastewater treatment plants[C]//Proc. of the IEEE 11th Data Driven Control and Learning Systems Conference, 2022: 437-442.
|
20 |
杨成飞. 基于高斯过程的智能采样策略研究[D]. 合肥: 中国科学技术大学, 2019.
|
|
YANG C F. Adaptive sampling strategy based on Gaussian process[D]. Hefei: University of Science and Technology of China, 2019.
|
1 |
王继民, 彭波. 搜索引擎用户访问量模型[J]. 计算机工程与应用, 2004, (25): 9-11, 30.
doi: 10.3321/j.issn:1002-8331.2004.25.003
|
|
WANG J M , PENG B . Modeling quantity of users' access for search engine[J]. Computer Engineering and Applications, 2004, (25): 9-11, 30.
doi: 10.3321/j.issn:1002-8331.2004.25.003
|
2 |
程鹏超, 杜军平, 薛哲. 基于多路交叉的用户金融行为预测[J]. 智能系统学报, 2021, 16 (2): 378- 384.
|
|
CHENG P C , DU J P , XUE Z . Prediction of user financial behavior based on multi-way crossing[J]. CAAI Transactions on Intelligent Systems, 2021, 16 (2): 378- 384.
|
3 |
XIAO H B, XIAO J H, DENG X W, et al. Traffic flow prediction based on traffic and meteorological data fusion in non-stationary environments[C]//Proc. of the International Conference on Electronic Information Technology and Smart Agriculture, 2021: 154-158.
|
4 |
LEE J, LEE H Y, KIM N W, et al. A study on online arima algorithms applying various gradient descent optimization algorithms for time series prediction[C]//Proc. of the International Conference on Information and Communication Technology Convergence, 2021: 1104-1106.
|
5 |
PENG Y N , XIANG W L . Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction[J]. Physica A: Statistical Mechanics and its Applications, 2020, 549, 123913.
doi: 10.1016/j.physa.2019.123913
|
6 |
LI R M , HU Y C , LIANG Q H . T2F-LSTM method for long-term traffic volume prediction[J]. IEEE Trans.on Fuzzy Systems, 2020, 28 (12): 3256- 3264.
doi: 10.1109/TFUZZ.2020.2986995
|
7 |
BECKERS T. An introduction to Gaussian process models[EB/OL]. [2024-01-10]. https://arXivpreprintarXiv:2102.05497, 2021.
|
8 |
KRISHNAN V , CHANDRA K . Probability and random proce-sses[M]. Hoboken: John Wiley & Sons, 2016.
|
9 |
JAKKALA K. Deep Gaussian processes: a survey[EB/OL]. [2024-01-10]. https://arXivpreprintarXiv:2106.12135, 2021.
|
10 |
WILLIAMS C K I , RASMUSSEN C E . Gaussian processes for machine learning[M]. Cambridge: Massachusetts Institute of Technology press, 2006.
|
11 |
梁袁泽. 基于经验模态分解与排列熵的癫痫脑电信号自动检测方法[D]. 南京: 南京邮电大学, 2023.
|
21 |
ALBRECHT T , RAUSCH T M , DERRA N D . Call me maybe: methods and practical implementation of artificial intelligence in call center arrivals' forecasting[J]. Journal of Business Research, 2021, 123, 267- 278.
doi: 10.1016/j.jbusres.2020.09.033
|
22 |
BERGMEIR C , COSTANTINI M , BENITEZ J M . On the usefulness of cross-validation for directional forecast evaluation[J]. Computational Statistics & Data Analysis, 2014, 76, 132- 143.
|
23 |
CERQUEIRA V , TORGO L , MOZETIC I . Evaluating time series forecasting models: an empirical study on performance estimation methods[J]. Machine Learning, 2020, 109 (11): 1997- 2028.
doi: 10.1007/s10994-020-05910-7
|
24 |
ARLOT S , CELISSE A . A survey of cross-validation procedures for model selection[J]. Statistics Surveys, 2010, 4 (2010): 40- 79.
|
25 |
BERGMEIR C , HYNDMAN R J , KOO B . A note on the validity of cross-validation for evaluating autoregressive time series prediction[J]. Computational Statistics & Data Analysis, 2018, 120, 70- 83.
|
26 |
GUI C, SUN B L, SONG Y, et al. Variable length sliding window-based network coding algorithm in MANETs[C]//Proc. of the International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2017.
|
27 |
MENG J F , GONG L , XU J . Sliding-window QPS (SW-QPS) a perfect parallel iterative switching algorithm for input-queued switches[J]. ACM Sigmetrics Performance Evaluation Review, 2021, 48 (3): 71- 76.
doi: 10.1145/3453953.3453969
|
28 |
LI L G, ZHAO J S, QIANG B H, et al. Prediction method of fan main shaft fault state based on sliding window characteristics[C]//Proc. of the 10th International Conference on Internet Computing for Science and Engineering, 2021: 67-73.
|
29 |
VARDHAN B V S, KHEDKAR M, SURESH V. Hyper-parameter tuned short term load forecasting using stochastic classifier-regression mapping for power system operator[C]//Proc. of the IEEE PES 14th Asia-Pacific Power and Energy Engineering Conference, 2022.
|
30 |
LI Z H, SHOEMAKER C A. Hyper-parameter optimization for deep learning by surrogate-based model with weighted distance exploration[C]//Proc. of the IEEE Congress on Evolutionary Computation, 2021: 917-925.
|
31 |
SODA上海开放数据创新应用大赛. 摩拜上海城区用户使用数据[EB/OL]. [2024-01-10]. https://shanghai.sodachallenges.com/data.html.
|