系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (8): 2686-2695.doi: 10.12305/j.issn.1001-506X.2024.08.16

• 系统工程 • 上一篇    

基于层级池化序列匹配的知识图谱复杂问答最优查询图选择方法

王冬, 周思航, 黄健, 张中杰   

  1. 国防科技大学智能科学学院, 湖南 长沙 410073
  • 收稿日期:2022-11-22 出版日期:2024-07-25 发布日期:2024-08-07
  • 通讯作者: 黄健
  • 作者简介:王冬 (1989—), 男, 博士研究生, 主要研究方向为知识图谱、知识推理与问答
    周思航 (1991—), 男, 助理研究员, 博士, 主要研究方向为知识图谱、模式识别、机器学习
    黄健 (1971—), 女, 研究员, 博士, 主要研究方向为分布式仿真与任务规划、知识图谱
    张中杰 (1988—), 男, 讲师, 博士, 主要研究方向为数据挖掘
  • 基金资助:
    国家自然科学基金(62006237)

Hierarchical pooling sequence matching based optimal selection method of query graph for complex question answering over knowledge graph

Dong WANG, Sihang ZHOU, Jian HUANG, Zhongjie ZHANG   

  1. School of Intelligence Science, National University of Defense Technology, Changsha 410073, China
  • Received:2022-11-22 Online:2024-07-25 Published:2024-08-07
  • Contact: Jian HUANG

摘要:

在处理知识图谱复杂问答任务时, 传统的查询图语义解析方法需要在排序阶段对大量结构复杂的候选查询图进行语义编码, 用以获得各自多维特征表示。然而, 在编码过程中采用的全局最大或平均池化操作通常存在对代表性特征提取能力不足的问题。针对以上问题, 提出一种基于层级池化序列匹配的最优查询图选择方法。在实现候选查询图的交互建模过程中, 同时采用层级池化滑动窗口技术分层提取问句和查询图序列对的局部显著性特征与全局语义特征, 使得到的特征向量更好地用于候选查询图的语义匹配打分。所提方法在两个流行的复杂问答数据集MetaQA和WebQuestionsSP上开展广泛实验。实验结果表明: 引入层级池化操作能够有效提取复杂查询图序列的代表性语义特征, 增强原有排序模型的交互编码能力, 有助于进一步提升知识图谱复杂问答系统的性能。

关键词: 知识图谱复杂问答, 查询图语义解析, 层级池化, 交互编码

Abstract:

When dealing with complex question answering task over knowledge graph, traditional semantic parsing method for query graphs requires encoding massive candidate query graphs with complex structures in the ranking stage to obtain their respective multi-dimensional feature representations. However, the global maximum or average pooling operation used during the encoding process often suffers from insufficient extracting capability for representative feature. To address the aforementioned problem, an optimal selection method for query graphs based on hierarchical pooling sequence matching is proposed. Meanwhile, sliding window technique based on hierarchical pooling is adopted to hierarchically extract local salient features and global semantic features of question and query graph sequence pairs during the interactive modeling of candidate query graphs, making the resulting feature vectors better used for semantic matching scoring of candidate query graphs. The proposed method is extensively evaluated on two popular complex question answering datasets, MetaQA and WebQuestionsSP. Experiment results show that by introducing hierarchical pooling operation, representative semantic features of complex query graph sequences can be effectively extracted, and the interactive encoding capability of the original ranking model can be enhanced, which helps further improve the performance of complex question answering systems over knowledge graph.

Key words: complex question answering over knowledge graph, semantic parsing for query graph, hierarchical pooling, interactive encoding

中图分类号: