系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (8): 2676-2685.doi: 10.12305/j.issn.1001-506X.2024.08.15

• 系统工程 • 上一篇    

高维数据局部贝叶斯网络结构学习

王阳阳, 高晓光, 茹鑫鑫   

  1. 西北工业大学电子信息学院, 陕西 西安 710129
  • 收稿日期:2023-09-06 出版日期:2024-07-25 发布日期:2024-08-07
  • 通讯作者: 高晓光
  • 作者简介:王阳阳(1988—), 男, 博士研究生, 主要研究方向为特征选择、贝叶斯网络结构学习
    高晓光(1957—), 女, 教授, 博士, 主要研究方向为贝叶斯网络学习、航空火力控制、作战效能分析
    茹鑫鑫(1993—), 男, 博士研究生, 主要研究方向为贝叶斯网络参数学习
  • 基金资助:
    国家自然科学基金(61573285)

Local Bayesian network structure learning for high-dimensional data

Yangyang WANG, Xiaoguang GAO, Xinxin RU   

  1. School of Electronic Information, Northwestern Polytechnical University, Xi'an 710129, China
  • Received:2023-09-06 Online:2024-07-25 Published:2024-08-07
  • Contact: Xiaoguang GAO

摘要:

针对高维数据下贝叶斯网络结构学习精度和效率低的问题, 提出一种基于归一化互信息和近似马尔可夫毯的特征选择(feature selection based on normalized mutual information and approximate Markov blanket, FSNMB)算法来获取目标节点的马尔可夫毯(Markov blanket, MB), 进一步结合MB和Meek规则实现基于特征选择的局部贝叶斯网络结构(construct local Bayesian network based on feature selection, FSCLBN)算法, 提高局部贝叶斯网络结构学习的精度和效率。实验证明, 在高维数据中, FSCLBN算法与现存的局部贝叶斯网络结构学习算法相比更具优势。

关键词: 贝叶斯网络, 特征选择, 互信息, 马尔可夫毯

Abstract:

To address the issue of low learning accuracy and efficiency of Bayesian network structure learning under high-dimensional data, a feature selection based on normalized mutual information and approximate Markov blanket (FSNMB) algorithm is proposed to obtain the Markov blanket (MB) of the target node. The MB and Meek's rule are further combined to implement the algorithm of construct local Bayesian network based on feature selection (FSCLBN), which improves the accuracy and efficiency of local Bayesian network structure learning. Experiment results show that in high-dimensional data, the FSCLBN algorithm has more advantages than the existing local Bayesian network structure learning algorithms.

Key words: Bayesian network, feature selection, mutual information, Markov blanket (MB)

中图分类号: