系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (8): 2676-2685.doi: 10.12305/j.issn.1001-506X.2024.08.15
• 系统工程 • 上一篇
王阳阳, 高晓光, 茹鑫鑫
收稿日期:
2023-09-06
出版日期:
2024-07-25
发布日期:
2024-08-07
通讯作者:
高晓光
作者简介:
王阳阳(1988—), 男, 博士研究生, 主要研究方向为特征选择、贝叶斯网络结构学习基金资助:
Yangyang WANG, Xiaoguang GAO, Xinxin RU
Received:
2023-09-06
Online:
2024-07-25
Published:
2024-08-07
Contact:
Xiaoguang GAO
摘要:
针对高维数据下贝叶斯网络结构学习精度和效率低的问题, 提出一种基于归一化互信息和近似马尔可夫毯的特征选择(feature selection based on normalized mutual information and approximate Markov blanket, FSNMB)算法来获取目标节点的马尔可夫毯(Markov blanket, MB), 进一步结合MB和Meek规则实现基于特征选择的局部贝叶斯网络结构(construct local Bayesian network based on feature selection, FSCLBN)算法, 提高局部贝叶斯网络结构学习的精度和效率。实验证明, 在高维数据中, FSCLBN算法与现存的局部贝叶斯网络结构学习算法相比更具优势。
中图分类号:
王阳阳, 高晓光, 茹鑫鑫. 高维数据局部贝叶斯网络结构学习[J]. 系统工程与电子技术, 2024, 46(8): 2676-2685.
Yangyang WANG, Xiaoguang GAO, Xinxin RU. Local Bayesian network structure learning for high-dimensional data[J]. Systems Engineering and Electronics, 2024, 46(8): 2676-2685.
表4
基于50个样本的5种MB算法运行结果"
数据集 | 算法 | F得分 | 准确率 | 召回率 | 运行耗时/s |
Alarm | FSNMB | 0.57±0.07 | 0.44±0.08 | 0.79±0.06 | 0.01±0.01 |
IAMB | 0.22±0.00* | 1.00±0.00 | 0.13±0.00 | 0.00±0.00 | |
HITON-MB | 0.53±0.07 | 0.36±0.07 | 0.98±0.05 | 0.13±0.11 | |
MMMB | 0.40±0.02* | 0.25±0.02 | 0.98±0.05 | 2.48±0.44 | |
STMB | 0.36±0.00* | 0.22±0.00 | 1.00±0.00 | 0.57±0.35 | |
Hepar2 | FSNMB | 0.43±0.10 | 0.34±0.08 | 0.61±0.16 | 0.01±0.01 |
IAMB | 0.07±0.02* | 0.90±0.30 | 0.04±0.01 | 0.00±0.00 | |
HITON-MB | 0.38±0.13* | 0.46±0.15 | 0.33±0.12 | 0.01±0.01 | |
MMMB | 0.52±0.05 | 0.42±0.04 | 0.67±0.07 | 0.72±0.15 | |
STMB | 0.53±0.00* | 0.36±0.00 | 1.00±0.00 | 0.94±0.40 | |
Win95pts | FSNMB | 0.33±0.01 | 0.75±0.02 | 0.21±0.01 | 0.01±0.00 |
IAMB | 0.00±0.01* | 0.02±0.14 | 0.00±0.00 | 0.00±0.00 | |
HITON-MB | 0.12±0.01* | 0.67±0.05 | 0.07±0.02 | 0.01±0.00 | |
MMMB | 0.12±0.01* | 0.51±0.07 | 0.07±0.00 | 0.01±0.00 | |
STMB | 0.32±0.01 | 0.28±0.01 | 0.37±0.02 | 0.01±0.00 | |
Pathfinder | FSNMB | 0.66±0.04 | 1.00±0.00 | 0.50±0.05 | 4.03±1.38 |
IAMB | 0.00±0.00* | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
HITON-MB | 0.00±0.00* | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
MMMB | 1.00±0.00* | 0.99±0.00 | 1.00±0.00 | 67.57±0.30 | |
STMB | - | - | - | - | |
Andes | FSNMB | 0.34±0.07 | 0.30±0.06 | 0.41±0.11 | 0.04±0.02 |
IAMB | 0.14±0.05* | 0.65±0.24 | 0.08±0.03 | 0.01±0.00 | |
HITON-MB | 0.26±0.08* | 0.49±0.14 | 0.18±0.06 | 0.01±0.00 | |
MMMB | 0.23±0.07* | 0.44±0.13 | 0.16±0.05 | 0.02±0.00 | |
STMB | 0.27±0.08 | 0.19±0.06 | 0.46±0.17 | 0.01±0.01 |
表5
基于500个样本的5种MB算法运行结果"
数据集 | 算法 | F得分 | 准确率 | 召回率 | 运行耗时/s |
Alarm | FSNMB | 0.95±0.06 | 0.96±0.06 | 0.94±0.09 | 0.00±0.00 |
IAMB | 0.55±0.00* | 1.00±0.00 | 0.38±0.00 | 0.00±0.00 | |
HITON-MB | 0.94±0.06 | 0.95±0.06 | 0.93±0.09 | 0.01±0.00 | |
MMMB | 0.94±0.06 | 0.95±0.06 | 0.93±0.09 | 0.01±0.00 | |
STMB | 0.58±0.08* | 0.41±0.08 | 0.99±0.04 | 0.01±0.00 | |
Hepar2 | FSNMB | 0.47±0.08 | 0.93±0.09 | 0.32±0.07 | 0.01±0.00 |
IAMB | 0.27±0.03* | 0.90±0.11 | 0.16±0.02 | 0.01±0.00 | |
HITON-MB | 0.33±0.07* | 0.96±0.09 | 0.20±0.05 | 0.01±0.00 | |
MMMB | 0.32±0.07* | 0.96±0.09 | 0.20±0.05 | 0.01±0.00 | |
STMB | 0.47±0.11 | 0.61±0.11 | 0.40±0.12 | 0.02±0.01 | |
Win95pts | FSNMB | 0.47±0.00 | 1.00±0.02 | 0.31±0.00 | 0.01±0.00 |
IAMB | 0.24±0.01* | 0.80±0.01 | 0.14±0.00 | 0.01±0.00 | |
HITON-MB | 0.32±0.01* | 0.75±0.00 | 0.21±0.02 | 0.02±0.01 | |
MMMB | 0.33±0.03* | 0.86±0.02 | 0.21±0.04 | 0.01±0.01 | |
STMB | 0.45±0.05 | 0.55±0.05 | 0.38±0.04 | 0.02±0.01 | |
Pathfinder | FSNMB | 0.70±0.02 | 1.00±0.00 | 0.53±0.02 | 3.95±0.63 |
IAMB | 0.00±0.00* | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
HITON-MB | 0.00±0.00* | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
MMMB | 1.00±0.00* | 0.99±0.00 | 1.00±0.00 | 370.90±84.60 | |
STMB | - | - | - | - | |
Andes | FSNMB | 0.75±0.05 | 0.94±0.07 | 0.63±0.06 | 0.03±0.01 |
IAMB | 0.45±0.03* | 0.98±0.06 | 0.29±0.02 | 0.02±0.00 | |
HITON-MB | 0.74±0.05 | 0.92±0.06 | 0.62±0.07 | 0.04±0.01 | |
MMMB | 0.75±0.07 | 0.90±0.08 | 0.65±0.09 | 0.04±0.01 | |
STMB | 0.37±0.04* | 0.24±0.03 | 0.77±0.08 | 0.10±0.03 |
表6
基于5 000个样本的5种MB算法运行结果"
数据集 | 算法 | F得分 | 准确率 | 召回率 | 运行耗时/s |
Alarm | FSNMB | 0.99±0.05 | 1.00±0.00 | 0.98±0.08 | 0.03±0.00 |
IAMB | 0.80±0.05* | 1.00±0.00 | 0.68±0.06 | 0.01±0.00 | |
HITON-MB | 0.99±0.02 | 0.99±0.04 | 1.00±0.00 | 0.03±0.00 | |
MMMB | 0.98±0.03 | 0.97±0.05 | 1.00±0.00 | 0.03±0.00 | |
STMB | 0.65±0.05* | 0.49±0.06 | 1.00±0.00 | 0.05±0.00 | |
Hepar2 | FSNMB | 0.55±0.03 | 1.00±0.00 | 0.38±0.03 | 0.07±0.01 |
IAMB | 0.41±0.03* | 0.97±0.06 | 0.26±0.02 | 0.04±0.00 | |
HITON-MB | 0.70±0.04* | 0.96±0.03 | 0.56±0.05 | 0.31±0.07 | |
MMMB | 0.70±0.04* | 0.97±0.04 | 0.55±0.04 | 0.32±0.08 | |
STMB | 0.68±0.04* | 0.52±0.03 | 0.79±0.06 | 1.22±0.32 | |
Win95pts | FSNMB | 0.58±0.01 | 0.81±0.00 | 0.45±0.01 | 0.12±0.00 |
IAMB | 0.38±0.01* | 0.88±0.01 | 0.24±0.00 | 0.05±0.00 | |
HITON-MB | 0.71±0.01* | 0.89±0.01 | 0.59±0.01 | 0.15±0.01 | |
MMMB | 0.78±0.00* | 0.95±0.01 | 0.66±0.01 | 0.18±0.00 | |
STMB | 0.57±0.01 | 0.46±0.01 | 0.76±0.00 | 0.58±0.01 | |
Pathfinder | FSNMB | 0.72±0.02 | 1.00±0.00 | 0.57±0.03 | 4.81±0.41 |
IAMB | 0.03±0.01* | 1.00±0.00 | 0.02±0.00 | 0.01±0.00 | |
HITON-MB | 0.87±0.01 | 1.00±0.01 | 0.77±0.02 | 244.8±26.70 | |
MMMB | 0.98±0.01* | 0.99±0.00 | 0.97±0.02 | 416.3±22.51 | |
STMB | - | - | - | - | |
Andes | FSNMB | 0.70±0.03 | 0.98±0.04 | 0.54±0.04 | 0.15±0.00 |
IAMB | 0.64±0.00 | 1.00±0.00 | 0.47±0.00 | 0.15±0.00 | |
HITON-MB | 0.86±0.03* | 0.97±0.04 | 0.78±0.02 | 0.15±0.00 | |
MMMB | 0.87±0.02* | 0.98±0.03 | 0.78±0.02 | 0.14±0.00 | |
STMB | 0.35±0.02* | 0.21±0.01 | 0.89±0.03 | 0.42±0.03 |
表7
基于真实数据集的5种MB算法的分类精度对比"
数据集 | 算法 | 各分类器分类精度 | 平均分类精度 | ||||
KNN | SVM | RF | DT | NBC | |||
Wine | FSNMB | 0.95 | 0.97 | 0.94 | 0.85 | 0.97 | 0.94 |
IAMB | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | |
HITON-MB | 0.94 | 0.98 | 0.94 | 0.89 | 0.97 | 0.94 | |
MMMB | 0.95 | 0.98 | 0.95 | 0.88 | 0.97 | 0.95 | |
STMB | 0.94 | 0.98 | 0.94 | 0.89 | 0.97 | 0.94 | |
Breast | FSNMB | 0.94 | 0.94 | 0.95 | 0.93 | 0.63 | 0.88 |
IAMB | 0.92 | 0.92 | 0.91 | 0.91 | 0.92 | 0.91 | |
HITON-MB | 0.95 | 0.96 | 0.94 | 0.94 | 0.63 | 0.88 | |
MMMB | 0.95 | 0.96 | 0.94 | 0.93 | 0.63 | 0.88 | |
STMB | 0.95 | 0.96 | 0.94 | 0.92 | 0.63 | 0.88 | |
Ionosphere | FSNMB | 0.85 | 0.93 | 0.92 | 0.92 | 0.64 | 0.85 |
IAMB | 0.88 | 0.88 | 0.88 | 0.88 | 0.64 | 0.83 | |
HITON-MB | 0.83 | 0.94 | 0.95 | 0.90 | 0.64 | 0.85 | |
MMMB | 0.83 | 0.93 | 0.94 | 0.93 | 0.64 | 0.86 | |
STMB | 0.83 | 0.94 | 0.93 | 0.92 | 0.64 | 0.85 | |
Splice | FSNMB | 0.83 | 0.93 | 0.95 | 0.93 | 0.85 | 0.90 |
IAMB | 0.80 | 0.81 | 0.81 | 0.81 | 0.74 | 0.80 | |
HITON-MB | 0.71 | 0.90 | 0.94 | 0.93 | 0.89 | 0.88 | |
MMMB | 0.73 | 0.90 | 0.94 | 0.92 | 0.89 | 0.88 | |
STMB | 0.72 | 0.90 | 0.94 | 0.93 | 0.90 | 0.88 | |
Semeion | FSNMB | 0.87 | 0.91 | 0.89 | 0.68 | 0.17 | 0.70 |
IAMB | 0.38 | 0.41 | 0.40 | 0.41 | 0.33 | 0.39 | |
HITON-MB | - | - | - | - | - | - | |
MMMB | - | - | - | - | - | - | |
STMB | - | - | - | - | - | - |
表8
基于50个样本的4种局部BN结构学习算法运行结果"
数据集 | 算法 | F得分 | 汉明距离 | 反向边数量 | 丢失边数量 | 多余边数量 | 运行耗时/s |
Alarm | FSCLBN | 0.58±0.15 | 3.60±1.65 | 0.50±0.53 | 1.60±0.70 | 1.40±1.43 | 0.01±0.01 |
PCD_by_PCD | 0.38±0.19* | 10.60±3.66 | 1.40±1.71 | 0.10±0.32 | 9.00±2.62 | 2.55±0.63 | |
CMB | 0.23±0.23* | 6.20±2.78 | 3.60±1.26 | 0.10±0.32 | 2.50±2.27 | 0.42±0.42 | |
MB_by_MB | 0.00±0.00* | 5.00±0.00 | 0.00±0.00 | 4.00±0.00 | 0.00±0.00 | 0.01±0.01 | |
Hepar2 | FSCLBN | 0.31±0.11 | 19.80±2.86 | 1.30±0.48 | 12.90±1.97 | 5.60±2.67 | 0.03±0.02 |
PCD_by_PCD | 0.09±0.03* | 22.00±1.49 | 6.70±1.16 | 10.90±1.45 | 4.40±1.58 | 0.64±0.12 | |
CMB | 0.11±0.03* | 20.00±1.49 | 2.80±1.23 | 14.80±1.55 | 2.40±1.58 | 0.02±0.01 | |
MB_by_MB | 0.00±0.00* | 19.10±0.32 | 0.00±0.00 | 18.10±0.32 | 0.10±0.32 | 0.01±0.01 | |
Win95pts | FSCLBN | 0.41±0.20 | 8.50±1.43 | 0.50±0.71 | 6.10±1.66 | 1.90±1.37 | 0.01±0.01 |
PCD_by_PCD | 0.00±0.00* | 10.20±0.42 | 0.00±0.00 | 9.30±0.95 | 0.20±0.42 | 0.01±0.02 | |
CMB | 0.00±0.00* | 10.20±0.42 | 0.00±0.00 | 9.00±0.94 | 0.20±0.42 | 0.01±0.02 | |
MB_by_MB | 0.03±0.07* | 10.10±0.57 | 0.10±0.32 | 9.20±0.63 | 0.30±0.48 | 0.01±0.01 | |
Andes | FSCLBN | 0.17±0.10 | 15.30±3.02 | 0.40±0.52 | 6.00±1.12 | 8.90±2.38 | 0.06±0.03 |
PCD_by_PCD | 0.09±0.12* | 8.30±1.25 | 1.50±0.85 | 6.00±1.05 | 0.80±0.92 | 0.03±0.02 | |
CMB | 0.11±0.15 | 9.30±1.20 | 1.50±0.97 | 5.80±0.92 | 2.00±0.82 | 0.17±0.15 | |
MB_by_MB | 0.23±0.06 | 7.10±0.57 | 0.40±0.52 | 6.50±0.53 | 0.20±0.42 | 0.02±0.01 |
表9
基于500个样本的4种局部BN结构学习算法运行结果"
数据集 | 算法 | F得分 | 汉明距离 | 反向边数量 | 丢失边数量 | 多余边数量 | 运行耗时/s |
Alarm | FSCLBN | 0.76±0.24 | 1.60±1.35 | 0.70±0.95 | 0.70±0.48 | 0.20±0.42 | 0.02±0.01 |
PCD_by_PCD | 0.79±0.15 | 1.30±0.67 | 0.40±0.84 | 0.60±0.52 | 0.00±0.00 | 0.02±0.01 | |
CMB | 0.73±0.36 | 1.50±1.78 | 0.90±1.45 | 0.60±0.52 | 0.00±0.00 | 0.02±0.01 | |
MB_by_MB | 0.58±0.23 | 3.20±1.40 | 0.50±0.71 | 1.90±0.74 | 0.80±0.63 | 0.01±0.01 | |
Hepar2 | FSCLBN | 0.50±0.16 | 12.50±2.51 | 0.70±0.95 | 11.40±2.32 | 0.40±0.52 | 0.02±0.01 |
PCD_by_PCD | 0.20±0.10* | 16.60±1.17 | 2.60±1.35 | 14.00±1.05 | 0.00±0.00 | 0.01±0.00 | |
CMB | 0.32±0.13* | 15.10±1.66 | 1.30±1.16 | 13.80±0.92 | 0.00±0.00 | 0.03±0.02 | |
MB_by_MB | 0.17±0.08* | 20.10±2.88 | 2.10±1.37 | 14.70±0.82 | 3.30±2.63 | 0.02±0.01 | |
Win95pts | FSCLBN | 0.60±0.12 | 5.80±1.55 | 0.70±0.48 | 4.30±0.95 | 0.80±0.63 | 0.02±0.00 |
PCD_by_PCD | 0.11±0.13* | 9.30±0.82 | 1.50±1.51 | 7.20±1.03 | 0.00±0.00 | 0.05±0.04 | |
CMB | 0.32±0.12* | 8.10±1.29 | 1.20±0.79 | 6.60±1.35 | 0.30±0.67 | 0.04±0.01 | |
MB_by_MB | 0.16±0.17* | 11.70±2.63 | 1.60±1.07 | 7.20±0.92 | 2.90±1.60 | 0.03±0.01 | |
Andes | FSCLBN | 0.64±0.19 | 4.60±2.59 | 0.60±0.52 | 2.80±1.14 | 1.20±1.48 | 0.04±0.02 |
PCD_by_PCD | 0.34±0.18* | 5.70±1.50 | 3.60±1.10 | 2.00±0.67 | 0.10±0.32 | 0.01±0.01 | |
CMB | 0.63±0.15 | 4.00±1.25 | 1.20±0.92 | 2.20±0.63 | 0.60±0.70 | 0.12±0.06 | |
MB_by_MB | 0.30±0.09* | 10.90±1.29 | 0.90±0.57 | 4.50±0.53 | 5.50±1.08 | 0.10±0.00 |
表10
基于5 000个样本的4种局部BN结构学习算法运行结果"
数据集 | 算法 | F得分 | 汉明距离 | 反向边数量 | 丢失边数量 | 多余边数量 | 运行耗时/s |
Alarm | FSCLBN | 0.92±0.07 | 0.60±0.52 | 0.10±0.32 | 0.50±0.53 | 0.00±0.00 | 0.04±0.00 |
PCD_by_PCD | 0.86±0.10 | 0.70±0.48 | 0.70±0.48 | 0.00±0.00 | 0.00±0.00 | 0.05±0.01 | |
CMB | 0.92±0.26 | 0.50±1.58 | 0.40±1.26 | 0.00±0.00 | 0.10±0.32 | 0.11±0.05 | |
MB_by_MB | 0.41±0.15* | 6.30±2.41 | 1.50±0.71 | 1.00±0.00 | 3.80±1.81 | 0.09±0.01 | |
Hepar2 | FSCLBN | 0.61±0.04 | 10.70±0.82 | 0.00±0.00 | 10.70±0.82 | 0.00±0.00 | 0.08±0.01 |
PCD_by_PCD | 0.17±0.07* | 16.40±1.07 | 9.40±1.51 | 7.00±0.67 | 0.00±0.00 | 0.30±0.06 | |
CMB | 0.53±0.13* | 10.70±2.06 | 3.80±2.04 | 6.90±0.57 | 0.00±0.00 | 0.91±0.30 | |
MB_by_MB | 0.13±0.03* | 24.90±2.18 | 7.40±1.07 | 9.30±0.95 | 8.20±2.04 | 0.25±0.01 | |
Win95pts | FSCLBN | 0.64±0.04 | 5.60±0.84 | 0.20±0.42 | 3.80±0.79 | 1.10±0.57 | 0.13±0.02 |
PCD_by_PCD | 0.55±0.18 | 5.20±1.62 | 2.50±1.84 | 2.60±0.84 | 0.00±0.00 | 0.21±0.10 | |
CMB | 0.63±0.23 | 5.20±2.10 | 1.80±2.49 | 2.20±0.79 | 1.20±0.79 | 0.56±0.06 | |
MB_by_MB | 0.23±0.10* | 17.60±3.17 | 3.40±0.97 | 3.50±0.97 | 10.70±2.54 | 0.37±0.04 | |
Andes | FSCLBN | 0.56±0.15 | 4.30±1.06 | 0.00±0.00 | 2.80±0.42 | 0.00±0.00 | 0.37±0.05 |
PCD_by_PCD | 0.87±0.11* | 1.30±0.67 | 0.30±0.67 | 1.00±0.00 | 0.00±0.00 | 0.14±0.00 | |
CMB | 0.77±0.10* | 2.10±0.57 | 1.10±0.57 | 1.00±0.00 | 0.00±0.00 | 0.79±0.22 | |
MB_by_MB | 0.33±0.01* | 1.20±0.42 | 0.20±0.42 | 1.00±0.00 | 0.00±0.00 | 1.30±0.01 |
1 | CHEN S H , POLLINO C A . Good practice in Bayesian network modelling[J]. Environmental Modelling & Software, 2012, 37, 134- 145. |
2 |
SCANAGATTA M , SALMERON A , STELLA F . A survey on Bayesian network structure learning from data[J]. Progress in Artificial Intelligence, 2019, 8, 425- 439.
doi: 10.1007/s13748-019-00194-y |
3 | ZHANG Y , WENG W G . Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference[J]. Reliability Engineering & System Safety, 2020, 203, 107089. |
4 |
WANG Y Y , GAO X G , RU X X , et al. Using feature selection and Bayesian network identify cancer subtypes based on proteomic data[J]. Journal of Proteomics, 2023, 280, 104895.
doi: 10.1016/j.jprot.2023.104895 |
5 |
茹鑫鑫, 高晓光, 王阳阳. 基于模糊约束的贝叶斯网络参数学习[J]. 系统工程与电子技术, 2023, 45 (2): 444- 452.
doi: 10.12305/j.issn.1001-506X.2023.02.15 |
RU X X , GAO X G , WANG Y Y . Bayesian network parameter learning based on fuzzy constraints[J]. Systems Engineering and Electronics, 2023, 45 (2): 444- 452.
doi: 10.12305/j.issn.1001-506X.2023.02.15 |
|
6 |
WANG X C , REN H J , GUO X X . A novel discrete firefly algorithm for Bayesian network structure learning[J]. Knowledge-Based Systems, 2022, 242, 108426.
doi: 10.1016/j.knosys.2022.108426 |
7 | CHICKERING M , HECKERMAN D , MEEK C . Large-sample learning of Bayesian networks is NP-hard[J]. Journal of Machine Learning Research, 2004, 5, 1287- 1330. |
8 |
谭翔元, 高晓光, 贺楚超. 基于马尔可夫毯约束的最优贝叶斯网络结构学习算法[J]. 电子学报, 2019, 47 (9): 1898- 1904.
doi: 10.3969/j.issn.0372-2112.2019.09.012 |
TAN X Y , GAO X G , HE C C . Learning optimal bayesian network structure constrained with Markov blanket[J]. Acta Electronica Sinica, 2019, 47 (9): 1898- 1904.
doi: 10.3969/j.issn.0372-2112.2019.09.012 |
|
9 |
BUI A T , JUN C H . Learning Bayesian network structure using Markov blanket decomposition[J]. Pattern Recognition Letters, 2012, 33 (16): 2134- 2140.
doi: 10.1016/j.patrec.2012.06.013 |
10 | KOLLER D , SAHAMI M . Toward optimal feature selection[J]. Internationa Conference on Machine Learning, 1996, 28 (96): 284- 292. |
11 | MARGARITIS D , THRUN S . Bayesian network induction via local neighborhoods[J]. Advances in Neural Information Processing Systems, 1999, 12, 505- 511. |
12 | TSAMARDINOS I, ALIFERIS C F, STATNIKOV A R, et al. Algorithms for large scale Markov blanket discovery[C]//Proc. of the 16th International FAIRS Conference, 2003: 376-380. |
13 |
TSAMARDINOS I , BROWN L E , ALIFERIS C F . The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65, 31- 78.
doi: 10.1007/s10994-006-6889-7 |
14 | ALIFERIS C F, TSAMARDINOS I, STATNIKOV A. HITON: a novel Markov blanket algorithm for optimal variable selection[C]//Proc. of the AMIA Annual Symposium, 2003. |
15 | GAO T , JI Q . Efficient Markov blanket discovery and its application[J]. IEEE Trans. on Cybernetics, 2016, 47 (5): 1169- 1179. |
16 | BOMMERT A , SUN X D , BISCHL B , et al. Benchmark for filter methods for feature selection in high-dimensional classification data[J]. Computational Statistics & Data Analysis, 2020, 143, 106839. |
17 | JIA W K , SUN M L , LIAN J , et al. Feature dimensionality reduction: a review[J]. Complex & Intelligent Systems, 2022, 8 (3): 2663- 2693. |
18 | YU K , LIU L , LI J Y . A unified view of causal and non-causal feature selection[J]. ACM Transaction on Knowledge Discovery from Data, 2021, 15 (4): 1- 46. |
19 |
SUN L Q , YANG Y L , NING T . A novel feature selection using Markov blanket representative set and particle swarm optimization algorithm[J]. Computational and Applied Mathematics, 2023, 42, 81.
doi: 10.1007/s40314-023-02221-0 |
20 | 施启军, 潘峰, 龙福海, 等. 特征选择方法研究综述[J]. 微电子学与计算机, 2022, 39 (3): 1- 8. |
SHI Q J , PAN F , LONG F H , et al. A review of feature selection methods[J]. Microelectronics & Computer, 2022, 39 (3): 1- 8. | |
21 | YU L , LIU H . Efficient feature selection via analysis of relevance and redundancy[J]. The Journal of Machine Learning Research, 2004, 5, 1205- 1224. |
22 |
ESTEVEZ P A , TESMER M , PEREZ C A , et al. Normalized mutual information feature selection[J]. IEEE Trans. on Neural Networks, 2009, 20 (2): 189- 201.
doi: 10.1109/TNN.2008.2005601 |
23 | KERBER R. Chimerge: discretization of numeric attributes[C]//Proc. of the 10th National Conference on Artificial Intelligence, 1992: 123-128. |
24 | HARTEMINK A J. Principled computational methods for the validation discovery of genetic regulatory networks[D]. Cambridge: Massachusetts Institute of Technology, 2001. |
25 |
RESHEF D N , RESHEF Y A , FINUCANE H K , et al. Detecting novel associations in large data sets[J]. Science, 2011, 334 (6062): 1518- 1524.
doi: 10.1126/science.1205438 |
26 | LI J D , CHENG K W , WANG S H , et al. Feature selection: a data perspective[J]. ACM Computing Surveys, 2017, 50 (6): 1- 45. |
27 | GAO T, FADNIS K, CAMPBELL M. Local-to-global Bayesian network structure learning[C]//Proc. of the 34th International Conference on Machine Learning, 2017: 1193-1202. |
28 | YIN J X, ZHOU Y, WANG C Z, et al. Partial orientation and local structural learning of causal networks for prediction[C]//Proc. of the Workshop on the Causation and Prediction Challenge, 2008: 93-105. |
29 | GAO T, JI Q. Local causal discovery of direct causes and effects[C]//Proc. of the 29th Annual Conference on Neural Information Processing Systems, 2015: 2512-2520. |
30 | WANG C Z , ZHOU Y , ZHAO Q , et al. Discovering and orienting the edges connected to a target variable in a DAG via a sequential local learning approach[J]. Computational Statistics & Data Analysis, 2014, 77, 252- 266. |
31 | MARKELLE K, RACHEL L, KOLBY N. The UCI Machine Learning Repository[EB/OL]. [2023-08-06]. https:archive.ics.uci.edu. |
[1] | 蔡一鸣, 马力, 陆恒杨, 方伟. 基于全流程并行遗传算法的贝叶斯网络结构学习[J]. 系统工程与电子技术, 2024, 46(5): 1703-1711. |
[2] | 王紫东, 高晓光, 刘晓寒. 基于Stacking策略的集成BN网络目标威胁评估[J]. 系统工程与电子技术, 2024, 46(2): 586-598. |
[3] | 李庚松, 刘艺, 郑奇斌, 秦伟, 李红梅, 任小广, 宋明武. 基于蚁狮算法的元特征选择方法[J]. 系统工程与电子技术, 2023, 45(9): 2831-2842. |
[4] | 茹鑫鑫, 高晓光, 王阳阳. 基于模糊约束的贝叶斯网络参数学习[J]. 系统工程与电子技术, 2023, 45(2): 444-452. |
[5] | 曾婷, 高帅, 孙富强, 赖小明, 李云, 李孝鹏. 人机环耦合效应下卫星天线装配概率风险分析[J]. 系统工程与电子技术, 2023, 45(2): 606-613. |
[6] | 刘丹阳, 吴堃, 朱永锋, 张永杰, 周剑雄. 地面目标HRRP识别的稳健性特征选择方法[J]. 系统工程与电子技术, 2023, 45(12): 3726-3733. |
[7] | 张书衡, 翟茹萍, 刘永凯. 基于通信域和雷达域融合特征的无人机集群类型识别算法[J]. 系统工程与电子技术, 2023, 45(12): 3734-3742. |
[8] | 黄通, 高钦和, 刘志浩, 王冬, 马栋, 高蕾. 基于复杂网络理论的发射平台抗毁伤网络拓扑性质研究[J]. 系统工程与电子技术, 2023, 45(10): 3157-3164. |
[9] | 吴梦蝶, 程龙生, 陈闻鹤. 基于自适应马氏空间与深度学习的滚动轴承退化趋势预测[J]. 系统工程与电子技术, 2023, 45(10): 3338-3349. |
[10] | 肖宇, 邓正宏, 张展. 基于双阶段互信息准则的多目标检测波形设计[J]. 系统工程与电子技术, 2022, 44(9): 2736-2742. |
[11] | 李波, 周家豪, 刘民岷, 朱品朝. 基于改进NSGA3的焊接缺陷评估特征选择[J]. 系统工程与电子技术, 2022, 44(7): 2211-2218. |
[12] | 李懿凡, 钱华明, 黄洪钟, 张庭瑜, 黄土地. 基于广义连续时间贝叶斯网络的指挥控制网络系统可靠性分析[J]. 系统工程与电子技术, 2022, 44(12): 3880-3886. |
[13] | 王鹏, 孙紫荆, 张帆, 肖国松. 考虑概率型共因失效的多阶段任务系统可靠性分析模型[J]. 系统工程与电子技术, 2022, 44(12): 3887-3898. |
[14] | 乔殿峰, 梁彦, 马超雄, 杨心语, 汪冕, 李建国. 多域作战下的群目标意图识别与预测[J]. 系统工程与电子技术, 2022, 44(11): 3403-3412. |
[15] | 刘延钊, 黄志球, 沈国华, 王金永, 徐恒. 基于决策树和BN的自动驾驶车辆行为决策方法[J]. 系统工程与电子技术, 2022, 44(10): 3143-3154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||