系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (8): 2650-2666.doi: 10.12305/j.issn.1001-506X.2024.08.13
• 传感器与信号处理 • 上一篇
颜上取, 付耀文, 张文鹏, 杨威, 余若峰, 张法桐
收稿日期:
2023-02-28
出版日期:
2024-07-25
发布日期:
2024-08-07
通讯作者:
付耀文
作者简介:
颜上取(1997—), 男, 博士研究生, 主要研究方向为雷达智能信息处理基金资助:
Shangqu YAN, Yaowen FU, Wenpeng ZHANG, Wei YANG, Ruofeng YU, Fatong ZHANG
Received:
2023-02-28
Online:
2024-07-25
Published:
2024-08-07
Contact:
Yaowen FU
摘要:
视频合成孔径雷达(video synthetic aperture radar, ViSAR) 由于能够连续观测目标区域的变化,在许多领域得到了广泛的应用。首先梳理了国内外ViSAR相关的研究动态,分析了ViSAR高帧率成像以及动目标阴影形成的原理;然后系统地阐述了国内外ViSAR系统及其处理技术的研究进展,对成像算法、运动补偿算法以及动目标检测与跟踪技术等方面的研究进展进行了梳理和总结;最后总结了目前ViSAR相关的发展,并对未来ViSAR技术的潜在研究方向进行了展望。
中图分类号:
颜上取, 付耀文, 张文鹏, 杨威, 余若峰, 张法桐. 视频合成孔径雷达技术发展现状综述[J]. 系统工程与电子技术, 2024, 46(8): 2650-2666.
Shangqu YAN, Yaowen FU, Wenpeng ZHANG, Wei YANG, Ruofeng YU, Fatong ZHANG. Review of the development status for ViSAR techniques[J]. Systems Engineering and Electronics, 2024, 46(8): 2650-2666.
表2
国外ViSAR系统研究进展"
时间/年份 | 研究机构 | 研究内容 | 研究结果 |
2009 | SNL | 研发孔径重叠模式下的ViSAR系统, 并完成机载实验 | 首次实现ViSAR成像, 并奠定基于阴影的动目标检测基础 |
2010 | DRDC | 设计X波段ViSAR系统, 并完成机载实验 | 通过相邻帧图像的积累, 形成高对比度的SAR图像 |
2012 | DARPA | 计划设计太赫兹ViSAR系统 | 完成太赫兹相关器件研究 |
2013 | GA-ASI | 研究圆周轨迹聚束模式下的ViSAR系统 | 采用BP算法结合移位寄存器来进行成像处理, 交叠帧率达到了4 Hz |
2016 | FhG | 研制出新一代MIRANDA-300 ViSAR成像系统 | 系统集成度更高, 顺利验证太赫兹ViSAR的高分辨率能力 |
2017 | 韩国延世大学 | MIMO-FMCW ViSAR系统的研发设计 | 通过抑制方位向模糊, 达到ViSAR成像帧率的要求 |
2018 | DARPA | 太赫兹ViSAR系统研发完成, 并设计成像算法, 完成机载成像实验 | 成功地证明了235 GHz雷达系统的可行性, 并展示了其高分辨率能力 |
表3
国内ViSAR系统研究进展"
时间/年份 | 文献 | 研究内容 | 研究结果 |
2014 | 文献[ | 研发太赫兹FMCW-SAR系统 | 成像结果在方位向上可达到较高的分辨率 |
2015 | 文献[ | 提出了星载ViSAR模式 | 得到了仿真的视频帧图像序列 |
2016 | 文献[ | 设计了基于双站模式的天基ViSAR系统 | 适用于较多的工作模式, 能为后续的星载ViSAR的动目标检测提供依据 |
2016 | 文献[ | 实现了小型化的FMCW-SAR系统, 并完成机载实验 | 通过对数据的处理, 实现了ViSAR成像 |
2016 | 文献[ | ViSAR理论研究 | 详细分析了ViSAR模式中, 载机平台在不同速度下的成像帧率、成像分辨率与雷达工作频率的关系 |
2018 | 文献[ | 研发了一种220 GHz的ViSAR系统 | 通过成像试验可实现5 Hz的成像帧率, 3.2 cm的成像分辨率 |
2021 | 文献[ | ViSAR数字处理组件的研发 | PCB板可完成整个ViSAR系统的控制、数据采集等功能 |
1 |
LOVE A . In memory of Carl A[J]. IEEE Antennas and Propagation Society Newsletter, 1985, 27 (3): 17- 18.
doi: 10.1109/MAP.1985.27810 |
2 |
MOREIRA A , PRATS-IRAOLA P , YOUNIS M , et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1 (1): 6- 43.
doi: 10.1109/MGRS.2013.2248301 |
3 | 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005. |
BAO Z , XING M D , WANG T . Radar imaging technology[M]. Beijing: Publishing House of Electronics Industry, 2005. | |
4 | 李涛, 唐新明, 高小明, 等. SAR卫星业务化地形测绘能力分析与展望[J]. 测绘学报, 2021, 50 (7): 891- 904. |
LI T , TANG X M , GAO X M , et al. Analysis and outlook of the operational topographic surveying and mapping capability of the SAR satellites[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50 (7): 891- 904. | |
5 | 方臣, 胡飞, 陈曦, 等. 自然资源遥感应用研究进展[J]. 资源环境与工程, 2019, 33 (4): 563- 569. |
FANG C , HU F , CHEN X , et al. Advances in application of remote sensing to natural resources[J]. Resources Environment & Engineering, 2019, 33 (4): 563- 569. | |
6 | 黄国满, 程春泉, 赵争, 等. 机载SAR遥感测图技术及应用[J]. 测绘科学, 2019, 44 (6): 105- 113. |
HUANG G M , CHENG C Q , ZHAO Z , et al. Mapping technology and application of airborne SAR[J]. Science of Surveying and Mapping, 2019, 44 (6): 105- 113. | |
7 | 范西昆, 何丽娜. 美军地面战场态势感知系统发展启示[J]. 现代雷达, 2018, 40 (5): 5-7, 12. |
FAN X K , HE L N . The development of U. S ground battlefield situational awareness system and its implications[J]. Modern Radar, 2018, 40 (5): 5-7, 12. | |
8 | 明婧. 多基线干涉SAR高精度高程反演方法研究[D]. 成都: 电子科技大学, 2020. |
MING J. A research of high-precision elevation reconstruction method on multi-baseline interferometric SAR[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
9 | 杨祥立. 多极化SAR图像相干斑滤波与变化检测研究[D]. 武汉: 武汉大学, 2020. |
YANG X L. Speckle reduction and change detection multi-polarization SAR images[D]. Wuhan: Wuhan University, 2020. | |
10 | BISHOP E, LINNEHAN R, DOERRY A. Video-SAR using higher order Taylor terms for differential range[C]//Proc. of the IEEE Radar Conference, 2016. |
11 | PALM S, WAHLEN A, STANKO S, et al. Real-time onboard processing and ground based monitoring of FMCW-SAR videos[C]//Proc. of the 10th European Conference on Synthetic Aperture Radar, 2014. |
12 | HUANG X J , DING J X , GUO Q H . Unsupervised Image Registration for VIDEO SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2021, 14 (1): 1075- 1083. |
13 | WALLACE H B. DARPA MMW system programs and how they drive compound semiconductor technology needs[C]//Proc. of the IEEE Compound Semiconductor Integrated Circuit Symposium, 2015. |
14 | DAMINI A, BALAJI B, PARRY C, et al. A videoSAR mode for the X-band wideband experimental airborne radar[C]//Proc. of the SPIE-the International Society for Optical Engineering, 2010: 135-145. |
15 | DAMINI A, MANTLE V, DAVIDSON G. A new approach to coherent change detection in VideoSAR imagery using stack averaged coherence[C]//Proc. of the IEEE Radar Conference, 2013. |
16 | WELLS L, SORENSEN K, DOERRY A, et al. Developments in SAR and IFSAR systems and technologies at sandia national laboratories[C]//Proc. of the IEEE Aerospace Conference, 2003: 1085-1095. |
17 | WALLACE H B. Development of a video SAR for FMV through clouds[C]//Proc. of the SPIE Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation, 2015: 64-65. |
18 | 肖忠源, 张振华, 马晓萌. 视频SAR发展现状研究[C]//第三届航天电子战略研究论坛, 2017: 37-40. |
XIAO Z Y, ZHANG Z H, MA X M. Research on the development of video SAR[C]//Proc. of the 3rd Aerospace Electronics Strategy Research Forum, 2017: 37-40. | |
19 |
CERUTTI-MAORI D , KLARE J , BRENNER A R , et al. Wide-area traffic monitoring with the SAR/GMTI system PAMIR[J]. IEEE Trans. on Geoscience and Remote Sensing, 2008, 46 (10): 3019- 3030.
doi: 10.1109/TGRS.2008.923026 |
20 |
ROSEN P A , HENSLEY S , JOUGHIN I R , et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88 (3): 333- 382.
doi: 10.1109/5.838084 |
21 | YAN H, MAO X H, ZHANG J D, et al. Frame rate analysis of video synthetic aperture radar (ViSAR)[C]//Proc. of the IEEE International Symposium on Antennas and Propagation, 2016: 446-447. |
22 | 邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8 (6): 732- 757. |
XING M D , LIN H , CHEN J L , et al. A review of imaging algorithms in multi-platform-borne synthetic aperture radar[J]. Journal of Radars, 2019, 8 (6): 732- 757. | |
23 | 范文娜. 基于电磁模型的大斜视SAR成像研究[D]. 西安: 西安电子科技大学, 2019. |
FAN W N. Research on highly squinted SAR imaging based on electromagnetic model[D]. Xi'an: Xidian University, 2019. | |
24 |
HU R Z , MIN R , PI Y M . A video-SAR imaging technique for aspect-dependent scattering in wide angle[J]. IEEE Sensors Journal, 2017, 17 (12): 3677- 3688.
doi: 10.1109/JSEN.2017.2698161 |
25 | 胡睿智. 视频合成孔径雷达成像理论与关键技术研究[D]. 成都: 电子科技大学, 2018. |
HU R Z. Research on imaging theory and key technology of video synthetic aperture radar[D]. Chengdu: University of Electronic Science and Technology of China, 2018. | |
26 | SOUMEKH M . Synthetic aperture radar signal processing[M]. New York: Wiley, 1999. |
27 | JAKOWATZ C V J , WAHL D E , EICHEL P H , et al. Spotlight-mode synthetic aperture radar: a signal processing approach: a signal processing approach[M]. New York: Springer, 2012. |
28 | HARMONY D W, BICKEL D L, MARTINEZ A. A velocity independent continuous tracking radar concept[R]. Albuquerque: Sandia National Lab, 2011. |
29 | WALLACE H, GORMAN J, MALONEY P. Video synthetic aperture radar (ViSAR)[R]. Arlington: Defense Advanced Research Projects Agency, 2012. |
30 | 左峰. 视频合成孔径雷达成像算法研究[D]. 成都: 电子科技大学, 2019. |
ZUO F. Research on video synthetic aperture radar imaging algorithm[D]. Chengdu: University of Electronic Science and Technology of China, 2019. | |
31 | BIELEK T P, THOMPSON D G, WALKER B C. Synthetic aperture design for increased SAR image Rate[P]. U.S. : Patent 7498968, 2009-03-03. |
32 | GU C F, CHANG W G. An efficient geometric distortion correction method for SAR video formation[C]//Proc. of the IEEE International Conference on Modern Circuits and Systems Technologies, 2016. |
33 | SANDIA NATIONAL LABORATORIES. Eubank gate and traffic VideoSAR[EB/OL]. [2023-01-10]. https://www.sandia.gov/radar/video/index.html. |
34 | KIM S H, FAN R, DOMINSKI F. ViSAR: a 235 GHz radar for airborne applications[C]//Proc. of the IEEE Radar Confe-rence, 2018: 1549-1554. |
35 | MILLER J, BISHOP E, DOERRY A. An application of back projection for video SAR image formation exploiting a subaperature circular shift register[C]//Proc. of SPIE-the International Society for Optical Engineering, 2013: 66-79. |
36 | STANKO S, CARIS M, WAHLEN A, et al. Millimeter resolution with radar at lower terahertz[C]//Proc. of the IEEE International Radar Symposium, 2013: 235-238. |
37 | CARIS M, STANKO S, PALM S, et al. 300 GHz radar for high resolution SAR and ISAR applications[C]//Proc. of the IEEE International Radar Symposium, 2015: 577-580. |
38 | STANKO S, PALM S, SOMMER R, et al. Millimeter resolution SAR imaging of infrastructure in the lower THz region using MIRANDA-300[C]//Proc. of the IEEE European Microwave Conference, 2016: 1505-1508. |
39 | PALM S, SOMMER R, CARIS M, et al. Ultra-high resolution SAR in lower terahertz domain for applications in mobile mapping[C]//Proc. of the IEEE German Microwave Confe-rence, 2016: 205-208. |
40 | PALM S , SOMMER R , TESSMANN A , et al. Ultra-high resolution imaging of facades and vertical infrastructure by carborne SAR and airborne CSAR[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, 129- 136. |
41 |
KIM S , YU J , JEON S Y , et al. Signal processing for a multiple-input, multiple-output (MIMO) video synthetic aperture radar (SAR) with beat frequency division frequency-modulated continuous wave (FMCW)[J]. Remote Sensing, 2017, 9 (5): 491.
doi: 10.3390/rs9050491 |
42 | KIM S. SAR video generation of MIMO video SAR with beat frequency division FMCW[C]//Proc. of the IEEE International Conference on Signal Processing and Communication Systems, 2017. |
43 | ZHANG B , PI Y M , LI J . Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results[J]. IEEE Sensors Journal, 2014, 15 (1): 290- 299. |
44 | ZHAO S T, CHEN J, YANG W, et al. Image formation method for spaceborne video SAR[C]//Proc. of the IEEE Asia-Pacific Conference on Synthetic Aperture Radar, 2015: 148-151. |
45 | 梁健, 张润宁, 包敏凤. 天基视频SAR系统设计及成像算法研究[J]. 中国空间科学技术, 2016, 36 (6): 22- 28. |
LIANG J , ZHANG R N , BAO M F . Research on spaceborne video SAR system design and image formation algorithm[J]. Chinese Space Science and Technology, 2016, 36 (6): 22- 28. | |
46 | GU C F, CHANG W G, LI X Y, et al. The formation of high-resolution FMCW SAR video[C]//Proc. of the IEEE Progress in Electromagnetic Research Symposium, 2016: 496-499. |
47 | GU C F, CHANG W G. An efficient geometric distortion correction method for SAR video formation[C]//Proc. of the IEEE International Conference on Modern Circuits and Systems Technologies, 2016. |
48 | 宋晓燊, 禹卫东. 条带式VideoSAR参数依赖关系的推导及应用[J]. 中国科学院大学学报, 2016, 33 (1): 121- 127. |
SONG X S , YU W D . Derivation and application of stripmap VideoSAR parameter relations[J]. Journal of University of Chinese Academy of Sciences, 2016, 33 (1): 121- 127. | |
49 | YAN H, MAO X H, ZHANG J D, et al. Frame rate analysis of video synthetic aperture radar (ViSAR)[C]//Proc. of the IEEE International Symposium on Antennas and Propagation, 2016: 446-447. |
50 | 李大圣, 吴福伟, 孙俊, 等. 一种220 GHz波段太赫兹合成孔径成像雷达[J]. 微波学报, 2018, 34 (4): 55- 59. |
LI D S , WU F W , SUN J , et al. Terahertz synthetic aperture imaging radar based on 220 GHz band[J]. Journal of Microwave Science, 2018, 34 (4): 55- 59. | |
51 | 郑南南. 视频SAR信号产生与采集处理组件设计[D]. 西安: 西安电子科技大学, 2021. |
ZHENG N N. Design of video SAR Signal Generation and acquisition module[D]. Xi'an: Xidian University, 2021. | |
52 |
SONG X S , YU W D . Processing video-SAR data with the fast back projection method[J]. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (6): 2838- 2848.
doi: 10.1109/TAES.2016.150581 |
53 |
RIGLING B D , MOSES R L . Taylor expansion of the differential range for monostatic SAR[J]. IEEE Trans. on Aerospace and Electronic Systems, 2005, 41 (1): 60- 64.
doi: 10.1109/TAES.2005.1413746 |
54 |
MOSES R L , ASH J N . An autoregressive formulation for SAR back projection imaging[J]. IEEE Trans. on Aerospace and Electronic Systems, 2011, 47 (4): 2860- 2873.
doi: 10.1109/TAES.2011.6034669 |
55 | 梁健, 张润宁. GEO-LEO双站视频SAR系统若干问题研究[J]. 现代雷达, 2017, 39 (3): 17- 20. |
LIANG J , ZHANG R N . A study on key technologies of spaceborne video SAR system based on GEO-LEO bistatic model[J]. Modern Radar, 2017, 39 (3): 17- 20. | |
56 | HAWLEY R W, GARBER W L. Aperture weighting technique for video synthetic aperture radar[C]//Proc. of SPIE-the International Society for Optical Engineering, 2011: 67-73. |
57 |
WALKER J L . Range-Doppler imaging of rotating objects[J]. IEEE Trans. on Aerospace and Electronic Systems, 1980, AES-16 (1): 23- 52.
doi: 10.1109/TAES.1980.308875 |
58 |
ZHU D Y , ZHU Z D . Range resampling in the polar format algorithm for spotlight SAR image formation using the Chirp-Z-transform[J]. IEEE Trans. on Signal Processing, 2007, 55 (3): 1011- 1023.
doi: 10.1109/TSP.2006.887144 |
59 | DOERRY A W. Forming rotated SAR images by real-time motion compensation[R]. Albuquerque: Sandia National Lab, 2012. |
60 | ZUO F, LI J. A persistent imaging method for video-SAR in terahertz band[C]//Proc. of the IEEE International Applied Computational Electromagnetics Society Symposium, 2017. |
61 | HU R Z , MIN R , PI Y M . Interpolation-free algorithm for persistent multi-frame imaging of video-SAR[J]. IET Radar, Sonar & Navigation, 2017, 11 (6): 978- 986. |
62 | JIANG J W, LI Y W, ZHENG Q B. A THz video SAR imaging algorithm based on chirp scaling[C]//Proc. of the CIE International Conference on Radar, 2021: 656-660. |
63 | PU W , WU J J , HUANG Y L , et al. ORTP: a video SAR imaging algorithm based on low-tubal-rank tensor recovery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 (1): 1293- 1308. |
64 | KANTOR J M. Minimum entropy autofocus correction of residual range cell migration[C]//Proc. of the IEEE Radar Conference, 2017: 11-16. |
65 |
JIA G W , CHANG W G , ZHANG Q L , et al. The analysis and realization of motion compensation for circular synthetic aperture radar data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9 (7): 3060- 3071.
doi: 10.1109/JSTARS.2016.2553051 |
66 | LINNEHAN R, MILLER J, BISHOP E, et al. An autofocus technique for video-SAR[C]//Proc. of the 20th Conference on Algorithms for Synthetic Aperture Radar Imagery, 2013: 56-65. |
67 | 孙伟, 孙进平, 张远, 等. 大斜视直升机载太赫兹ViSAR振动补偿成像算法[J]. 北京航空航天大学学报, 2016, 42 (12): 2755- 2761. |
SUN W , SUN J P , ZHANG Y , et al. High squint helicopter-borne terahertz ViSAR vibration compensation imaging algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42 (12): 2755- 2761. | |
68 | 赵雨露, 张群英, 李超, 等. 视频合成孔径雷达振动误差分析及补偿方案研究[J]. 雷达学报, 2015, 4 (2): 230- 239. |
ZHAO Y L , ZHANG Q Y , LI C , et al. Vibration error analysis and motion compensation of video synthetic aperture radar[J]. Journal of Radars, 2015, 4 (2): 230- 239. | |
69 |
YANG X Q , SHI J , ZHOU Y Y , et al. Ground moving target tracking and refocusing using shadow in video-SAR[J]. Remote Sensing, 2020, 12 (18): 3083.
doi: 10.3390/rs12183083 |
70 | JAHANGIR M. Moving target detection for synthetic aperture radar via shadow detection[C]//Proc. of the IET International Conference on Radar Systems, 2007. |
71 | RAYNAL A M, BICKEL D L, DOERRY A W. Stationary and moving target shadow characteristics in synthetic aperture radar[C]//Proc. of the 18th Conference on Radar Sensor Technology, 2014: 413-427. |
72 | RAYNAL A M, DOERRY A W, MILLER J A, et al. Shadow probability of detection and false alarm for median-filtered SAR imagery[R]. Albuquerque: Sandia National Lab, 2014. |
73 |
何志华, 陈兴, 于春锐, 等. 一种稳健的视频SAR动目标阴影检测与跟踪处理方法[J]. 电子与信息学报, 2022, 44 (11): 3882- 3890.
doi: 10.11999/JEIT210853 |
HE Z H , CHEN X , YU C R , et al. A robust moving target shadow detection and tracking method for VideoSAR[J]. Journal of Electronics and Information Science, 2022, 44 (11): 3882- 3890.
doi: 10.11999/JEIT210853 |
|
74 | 李锦伟, 张升, 李财品. 一种星载视频SAR动目标恒虚警检测方法[C]//第六届高分辨率对地观测学术年会, 2019: 58-80. |
LI J W, ZHANG S, LI C P. A CFAR detection method for spaceborne video SAR moving targets[C]//Proc. of the 6th Annual Conference of High Resolution Earth Observation, 2019: 58-80. | |
75 | WANG H , CHEN Z S , ZHENG S C . Preliminary research of low-RCS moving target detection based on Ka-band video SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (6): 811- 815. |
76 | 聊蕾, 左潇丽, 云涛, 等. 基于图像序列的VideoSAR动目标检测方法[J]. 雷达科学与技术, 2016, 14 (6): 563-567, 573. |
LIAO L , ZUO X L , YUN T , et al. An approach to detect moving target in VideoSAR imagery sequence[J]. Radar Science and Technology, 2016, 14 (6): 563-567, 573. | |
77 | GOU L T, ZHU D Y, LI Y. A novel moving target detection method for VideoSAR[C]//Proc. of the IEEE International Applied Computational Electromagnetics Society Symposium, 2019. |
78 | ZHONG C , DING J S , ZHANG Y H . Video SAR moving target tracking using joint kernelized correlation filter[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 1481- 1493. |
79 | ZHANG Y, YANG S Y, LI H B, et al. Shadow tracking of moving target based on CNN for video SAR system[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2018: 4399-4402. |
80 | 丁金闪. 视频SAR成像与动目标阴影检测技术[J]. 雷达学报, 2020, 9 (2): 321- 334. |
DING J S . Focusing algorithms and moving target detection based on video SAR[J]. Journal of Radars, 2020, 9 (2): 321- 334. | |
81 | 丁金闪, 仲超, 温利武, 等. 视频合成孔径雷达双域联合运动目标检测方法[J]. 雷达学报, 2022, 11 (3): 313- 323. |
DING J S , ZHONG C , WEN L W , et al. Joint detection of moving target in video synthetic aperture radar[J]. Journal of Radars, 2022, 11 (3): 313- 323. | |
82 | 闫贺, 黄佳, 李睿安, 等. 基于改进快速区域卷积神经网络的视频SAR运动目标检测算法研究[J]. 电子与信息学报, 2021, 43 (3): 615- 622. |
YAN H , HUANG J , LI R A , et al. Research on video SAR moving target detection algorithm based on improved faster region-based CNN[J]. Journal of Electronics and Information Technology, 2021, 43 (3): 615- 622. | |
83 | LIANG Z H, LIANG C J, ZHANG Y, et al. Tracking of moving target based on SiamMask for video SAR system[C]//Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019. |
84 | BAO J Y , ZHANG X L , ZHANG T W , et al. ShadowDeNet: a moving target shadow detection network for video SAR[J]. Remote Sensing, 2022, 14 (2): 320. |
[1] | 王进, 冷祥光, 孙忠镇, 马晓杰, 杨阳, 计科峰. 复杂运动舰船目标SAR成像空/时变散焦特性研究[J]. 系统工程与电子技术, 2024, 46(7): 2237-2255. |
[2] | 邢世其, 纪朋徽, 代大海, 冯德军. 方位向调制干扰对高分宽幅多通道SAR的影响[J]. 系统工程与电子技术, 2024, 46(6): 1946-1956. |
[3] | 曾顶, 殷君君, 杨健. 基于融合距离的极化SAR图像非局部均值滤波[J]. 系统工程与电子技术, 2024, 46(5): 1493-1502. |
[4] | 邵子康, 张晓玲, 张天文, 曾天娇. 基于锚框自适应和多尺度增强的SAR舰船检测[J]. 系统工程与电子技术, 2024, 46(4): 1204-1211. |
[5] | 张天文, 张晓玲, 邵子康, 曾天娇. 基于掩模注意型交互的SAR舰船实例分割[J]. 系统工程与电子技术, 2024, 46(3): 831-838. |
[6] | 方小宇, 黄丽佳. 基于全局位置信息和残差特征融合的SAR船舶检测算法[J]. 系统工程与电子技术, 2024, 46(3): 839-848. |
[7] | 张亚丽, 冯伟, 全英汇, 邢孟道. 基于多源遥感图像多级协同融合的舰船识别算法[J]. 系统工程与电子技术, 2024, 46(2): 407-418. |
[8] | 刘燊文, 崔兴超, 陈思伟. 结合空时上下文信息的视频SAR图像相干斑滤波[J]. 系统工程与电子技术, 2024, 46(2): 446-458. |
[9] | 陈洋, 肖国尧, 全英汇, 任爱锋, 别博文, 邢孟道. 基于多核DSP的星载双基FMCW SAR成像算法实现[J]. 系统工程与电子技术, 2024, 46(1): 121-129. |
[10] | 刘鸣谦, 徐仲秋, 陈天成, 张冰尘, 吴一戎. 基于L1 & TV正则化的低过采样Staggered SAR成像方法[J]. 系统工程与电子技术, 2023, 45(9): 2718-2726. |
[11] | 王中宝, 尹奎英. 基于联合域滤波的无人机载SAR图像块效应抑制方法[J]. 系统工程与电子技术, 2023, 45(9): 2768-2776. |
[12] | 寇鹏, 刘永祥, 张弛, 李玮杰, 张双辉, 霍凯. 序列ISAR像复杂结构航天器在轨姿态估计[J]. 系统工程与电子技术, 2023, 45(8): 2438-2445. |
[13] | 王宁, 贺鹏超, 卢景月, 刘曦. 基于DOA估计的前视多通道SAR成像方法[J]. 系统工程与电子技术, 2023, 45(8): 2471-2478. |
[14] | 王鹏飞, 詹珩艺, 孙洪忠. 双基前视雷达二维空变补偿频域成像方法[J]. 系统工程与电子技术, 2023, 45(7): 1990-2001. |
[15] | 朱瀚神, 胡文华, 郭宝锋, 焦丽婷, 朱晓秀, 朱常安. 双基地ISAR稀疏孔径机动目标MTRC补偿成像算法[J]. 系统工程与电子技术, 2023, 45(7): 2022-2030. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||