系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (8): 2600-2614.doi: 10.12305/j.issn.1001-506X.2024.08.08
• 传感器与信号处理 • 上一篇
郑雨晴, 艾小锋, 徐志明, 赵锋, 肖顺平, 杨勇
收稿日期:
2022-07-12
出版日期:
2024-07-25
发布日期:
2024-08-07
通讯作者:
艾小锋
作者简介:
郑雨晴 (1998—), 女, 硕士研究生, 主要研究方向为双/多基地雷达目标探测与定位基金资助:
Yuqing ZHENG, Xiaofeng AI, Zhiming XU, Feng ZHAO, Shunping XIAO, Yong YANG
Received:
2022-07-12
Online:
2024-07-25
Published:
2024-08-07
Contact:
Xiaofeng AI
摘要:
前向散射雷达可通过捕获目标穿越基线时引起的信号扰动实现目标检测, 在隐身飞机目标探测方面具有一定潜力, 目标穿越特性的研究对信号检测和参数估计具有重要意义。首先构建了基于全球导航卫星系统(global navigation satellite system, GNSS)的前向散射雷达网模型, 分析了构成前向散射观测的条件和探测范围。然后, 基于前向散射动态信号模型, 提出采用时频域统计特征描述目标穿越基线的信号特性。最后, 通过仿真分析了目标穿越位置和运动参数对散射信号及其统计特征的影响, 揭示了前向散射信号的特征变化规律, 对后续提高穿越事件检测概率和参数估计精度具有参考价值。
中图分类号:
郑雨晴, 艾小锋, 徐志明, 赵锋, 肖顺平, 杨勇. 基于GNSS的前向散射雷达网目标穿越特性研究[J]. 系统工程与电子技术, 2024, 46(8): 2600-2614.
Yuqing ZHENG, Xiaofeng AI, Zhiming XU, Feng ZHAO, Shunping XIAO, Yong YANG. Research on target crossing characteristics of forward scatter radar net based on GNSS[J]. Systems Engineering and Electronics, 2024, 46(8): 2600-2614.
表2
前向散射回波仿真参数"
参数 | 符号 | 取值 | 备注 |
全向辐射功率/dBW | EIRP | 30 | Beidou等效全向辐射功率 |
接收天线增益/dB | GR | 10 | - |
载波频率/MHz | f0 | 1 268.52 | Beidou B3I |
基线长度/km | RD | 21 528 | MEO卫星轨道高度 |
目标散射相位/rad | φσ | 3/2π | - |
目标长度/m | l | 20 | - |
目标宽度/m | h | 13 | - |
目标穿越点与接收机的距离/m | dR | 8 000 | 飞机高度 |
目标运动方向与基线的夹角/rad | θt | π/2 | - |
目标速度/(m/s) | v | 250 | 飞机速度 |
目标轨迹与基线的最小距离/m | zP | 0 | 目标穿越(靠近)基线 |
100 | 目标距离基线较远 | ||
噪声功率/dBW | N0 | -170 | - |
表5
频域特征值"
特征值名称 | 表达式 | 物理意义 |
重心频率 | 描述信号在频谱中分量较大的信号频率, 反映功率谱的分布情况 | |
均方频率 | 描述功率谱主频带位置分布 | |
频率方差 | 描述功率谱能量分散程度 |
1 | FALCONI M T , LOMBARDO P , PASTINA D , et al. A closed-form model for long-and short-range forward scatter radar signals from rectangular conductive targets[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (2): 1370- 1390. |
2 | ARCANGELI A, BONGIOANNI C, USTALLI N, et al. Passive forward scatter radar based on satellite TV broadcast for air target detection: preliminary experimental results[C]//Proc. of the IEEE Radar Conference, 2017: 1592-1596. |
3 | DAUD N A M, ABD-RASHID N E, OTHMAN K A, et al. Analysis on radar cross section of different target specifications for forward scatter radar (FSR)[C]//Proc. of the 4th International Conference on Digital Information and Communication Technology and its Applications, 2014: 353-356. |
4 | MYAKINKOV A V, SMIRNOVA D M. The determination of coordinates of ground targets in multistatic forward-scattering radar[C]//Proc. of the 8th European Radar Conference, 2011: 150-153. |
5 |
CLEMENTE C , SORAGHAN J J . GNSS-based passive bistatic radar for micro-Doppler analysis of helicopter rotor blades[J]. IEEE Trans. on Aerospace and Electronic Systems, 2014, 50 (1): 491- 500.
doi: 10.1109/TAES.2013.120018 |
6 |
CONTU M , DE-LUCA A , HRISTOV S , et al. Passive multifrequency forward-scatter radar measurements of airborne targets using broadcasting signals[J]. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (3): 1067- 1087.
doi: 10.1109/TAES.2017.2649198 |
7 | 陈新亮, 胡程, 曾涛. 一种基于前向散射雷达的车辆目标自动识别方法[J]. 中国科学: 信息科学, 2012, 42 (11): 1471- 1480. |
CHEN X L , HU C , ZENG T . Automatic vehicle classification based on forward scattering radar[J]. Scientia Sinica Informationis, 2012, 42 (11): 1471- 1480. | |
8 | KANONA M E A. Ground target classification in forward scattering radar under noisy enviroment[D]. Khartoum: Future University, 2014. |
9 | MOHAMMED E A K , MOHAMMED K H , ASHRAF G A . Target classification in forward scattering radar in noisy environment[J]. International Journal of Application or Innovation in Engineering & Management, 2014, 3 (11): 188- 192. |
10 | KABAKCHIEV C, BEHAR V, GARVANOV I, et al. Detection, parametric imaging and classification of very small marine targets emerged in heavy sea clutter utilizing GPS-based forward scattering radar[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2014: 793-797. |
11 | SUBERVIOLA I , MAYORDOMO I , MENDIZABAL J . Experimental results of air target detection with a GPS forward-scattering radar[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 9 (1): 47- 51. |
12 | WACHTL S, KOCH V, SCHMIDT L P. Global navigation satellite systems in passive surveillance applications[C]//Proc. of the Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles, 2014: 135-140. |
13 | LIU C J, HU C, ZENG T, et al. Signal modeling and experimental verification in GNSS forward scatter radar[C]//Proc. of the 17th International Radar Symposium, 2016. |
14 |
赵晓彤, 郭琨毅, 盛新庆, 等. 前向雷达目标回波成分与特性分析[J]. 系统工程与电子技术, 2016, 38 (11): 2523- 2529.
doi: 10.3969/j.issn.1001-506X.2016.11.12 |
ZHAO X T , GUO K Y , SHENG X Q , et al. Characteristics analysis on forward scattering radar echoes[J]. Systems Engineering and Electronics, 2016, 38 (11): 2523- 2529.
doi: 10.3969/j.issn.1001-506X.2016.11.12 |
|
15 | HU C, ANTONIOU M, CHERNIAKOV M, et al. Quasi-optimal signal processing in ground forward scattering radar[C]//Proc. of the IEEE Radar Conference, 2008. |
16 |
LONG T , HU C , MIKHAIL C . Ground moving target signal model and power calculation in forward scattering micro radar[J]. Science China: Information Sciences, 2009, 52 (9): 1704- 1714.
doi: 10.1007/s11432-009-0154-1 |
17 |
ZENG T , HU C , CHERNIAKOV M , et al. Joint parameter estimation and Cramer-Rao bound analysis in ground-based forward scatter radar[J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012, 80.
doi: 10.1186/1687-6180-2012-80 |
18 |
HU C , SIZOV V , ANTONIOU M , et al. Optimal signal processing in ground-based forward scatter micro radars[J]. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (4): 3006- 3026.
doi: 10.1109/TAES.2012.6324674 |
19 | GASHINOVA M , DANIEL L , SIZOV V , et al. Phenomenology of Doppler forward scatter radar for surface targets observation[J]. IET Radar, Sonar & Navigation, 2013, 7 (4): 422- 432. |
20 |
CHERNIAKOV M , ABDULLAH R S A R , JANCOVIC P , et al. Automatic ground target classification using forward scattering radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153 (5): 427- 437.
doi: 10.1049/ip-rsn:20050028 |
21 |
COLONE F , MARTELLI T , LOMBARDO P . Quasi-monostatic versus near forward scatter geometry in Wifi-based passive radar sensors[J]. IEEE Sensors Journal, 2017, 17 (15): 4757- 4772.
doi: 10.1109/JSEN.2017.2713450 |
22 |
HU C , LIU C J , WANG R , et al. Detection and SISAR imaging of aircrafts using GNSS forward scatter radar: signal mo-deling and experimental validation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (4): 2077- 2093.
doi: 10.1109/TAES.2017.2683578 |
23 | LIU C J, HU C, WANG R, et al. GNSS forward scatter radar detection: signal processing and experiment[C]//Proc. of the 18th International Radar Symposium, 2017. |
24 | HU C, WANG L, LIU C. SISAR imaging method based on GNSS signal: theory and experimental results[C]//Proc. of the CIE International Conference on Radar, 2016. |
25 | 徐志明, 王国玉, 郑雨晴, 等. 前向散射雷达目标回波特性实验[J]. 太赫兹科学与电子信息学报, 2022, 20 (3): 195- 199. |
XU Z M , WANG G Y , ZHENG Y Q , et al. Experimental study on forward scattering echo characteristics of radar targets[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20 (3): 195- 199. | |
26 | WACHTL S, KOCH V, SCHMIDT L P. Multipath sensor based on GNSS for passive airborne surveillance[C]//Proc. of the European Radar Conference, 2013: 255-258. |
27 |
郑雨晴, 艾小锋, 徐志明, 等. 基于穿越时刻的前向散射雷达网目标参数估计方法[J]. 系统工程与电子技术, 2023, 45 (5): 1323- 1332.
doi: 10.12305/j.issn.1001-506X.2023.05.08 |
ZHENG Y Q , AI X F , XU Z M , et al. Parameters estimation of FSR net based on crossing times[J]. Systems Engineering and Electronics, 2023, 45 (5): 1323- 1332.
doi: 10.12305/j.issn.1001-506X.2023.05.08 |
|
28 |
AI X F , ZHENG Y Q , XU Z M , et al. Parameter estimation for uniformly accelerating moving target in the forward scatter radar network[J]. Remote Sensing, 2022, 14 (4): 1006.
doi: 10.3390/rs14041006 |
29 | USTALLI N , PASTINA D , LOMBARDO P . Target motion parameters estimation in forward scatter radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (1): 226- 248. |
30 | 鲁郁. 北斗/GPS双模软件接收机原理与实现技术[M]. 北京: 电子工业出版社, 2016: 384- 386. |
LU Y . The principle and realization technology of Beidou/GPS dual-mode software receiver[M]. Beijing: Publishing House of Electronics Industry, 2016: 384- 386. |
[1] | 李亮, 黄洋, 金光虎, 董臻, 何峰, 邹慕兰. 双基地宽带成像雷达时间及调频率同步方法[J]. 系统工程与电子技术, 2024, 46(4): 1193-1203. |
[2] | 谭啸, 杨志伟, 何鹏远, 吴翔宇. 星载双基跟飞构型的杂波特性分析及参数选择[J]. 系统工程与电子技术, 2023, 45(9): 2735-2743. |
[3] | 李建利, 魏梦笛, 王其朋, 张武. MPOS联邦实时组合算法[J]. 系统工程与电子技术, 2023, 45(9): 2860-2865. |
[4] | 王森, 鲍庆龙, 潘嘉蒙, 祝茜. 基于改进概率假设密度滤波器的非合作双基地雷达目标跟踪[J]. 系统工程与电子技术, 2023, 45(7): 2002-2009. |
[5] | 郑雨晴, 艾小锋, 徐志明, 赵锋, 杨勇. 基于穿越时刻的前向散射雷达网目标参数估计[J]. 系统工程与电子技术, 2023, 45(5): 1323-1332. |
[6] | 倪萌钰, 陈辉, 王晓戈, 程杨, 李槟槟. 星载双基地雷达杂波建模及特性分析[J]. 系统工程与电子技术, 2023, 45(4): 1024-1031. |
[7] | 沈子涵, 赵修斌, 张闯, 张良, 刘鑫贤. 基于长短期记忆神经网络的自适应容错方法[J]. 系统工程与电子技术, 2023, 45(3): 831-838. |
[8] | 鲁祖坤, 郭海玉, 宋捷, 孙一凡, 李柏渝. 抗干扰型卫星导航接收机的最优前端增益[J]. 系统工程与电子技术, 2022, 44(7): 2270-2275. |
[9] | 王宇卓, 朱圣棋, 李西敏, 兰岚. FDA MIMO双基雷达主瓣走动矫正距离模糊杂波抑制[J]. 系统工程与电子技术, 2022, 44(5): 1483-1494. |
[10] | 何鹏远, 杨志伟, 谭啸. 星载双基地雷达杂波抑制能力分析与构型优选[J]. 系统工程与电子技术, 2022, 44(2): 440-447. |
[11] | 刘一, 周威, 金际航, 边少锋, 谷守周. 基于Mean Shift模型的多粗差探测RAIM算法[J]. 系统工程与电子技术, 2022, 44(2): 644-650. |
[12] | 马前阔, 张小宽, 宗彬锋, 徐嘉华, 王阳, 郑舒予. 基于改进混合对数正态分布模型的隐身飞机动态RCS统计特性分析[J]. 系统工程与电子技术, 2022, 44(1): 34-39. |
[13] | 樊敏, 黄勇, 黄磊, 陈少伍, 李赞. 基于北斗卫星校准的连接端站干涉测量与定轨[J]. 系统工程与电子技术, 2021, 43(5): 1303-1309. |
[14] | 徐志明, 艾小锋, 周柯宏, 赵锋, 肖顺平. 双基地雷达微动空间目标全极化回波仿真方法[J]. 系统工程与电子技术, 2021, 43(10): 2789-2796. |
[15] | 王秋滢, 刘凯悦, 尹娟. 车载GNSS失锁下基于BPNN的微陀螺误差估计及定位方法研究[J]. 系统工程与电子技术, 2020, 42(5): 1139-1145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||