系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (7): 2465-2474.doi: 10.12305/j.issn.1001-506X.2024.07.28
• 制导、导航与控制 • 上一篇
闫帅豪1,*, 魏明英1,2, 郑勇斌1
收稿日期:
2023-09-12
出版日期:
2024-06-28
发布日期:
2024-07-02
通讯作者:
闫帅豪
作者简介:
闫帅豪 (1998—),男,硕士研究生,主要研究方向为飞行器稳定控制方法。Shuaihao YAN1,*, Mingying WEI1,2, Yongbin ZHENG1
Received:
2023-09-12
Online:
2024-06-28
Published:
2024-07-02
Contact:
Shuaihao YAN
摘要:
针对防空导弹的目标机动性较强带来的姿态控制品质变差的问题, 提出一种事件触发控制方法。首先分析了由于目标机动性过强导致的指令变化率未知, 以及指令变化率过大导致稳态误差较大的原因。针对此问题引入非线性最速跟踪微分器获取指令变化率, 研究指令变化率与姿态角误差之间关系, 定义稳态效应指标, 并在该指标基础上设计了基于事件触发的新增控制量。采用滑模控制和扰动观测器使系统在指令变化率较大条件下的稳态误差被抑制在5%误差带之内。在工程实践的背景下, 数值仿真考虑了气动参数拉偏以及执行机构限幅, 仿真结果验证了设计的控制系统的有效性。
中图分类号:
闫帅豪, 魏明英, 郑勇斌. 基于大指令变化率下的防空导弹姿态控制方法[J]. 系统工程与电子技术, 2024, 46(7): 2465-2474.
Shuaihao YAN, Mingying WEI, Yongbin ZHENG. Attitude control method of air defense missile based on large command change rate[J]. Systems Engineering and Electronics, 2024, 46(7): 2465-2474.
表1
仿真参数"
参数 | 取值 |
姿态角指令 | |
观测器参数 | |
TD | r=200, α=0.75 |
控制系统参数 |
1 |
BU X W , JIANG B X , LEI H M . Performance guaranteed finite-time non-affine control of waverider vehicles without function approximation[J]. Transactions on Intelligent Transportation Systems, 2023, 24 (3): 3252- 3262.
doi: 10.1109/TITS.2022.3224424 |
2 |
BU X W , JIANG B X , LEI H M . Nonfragile quantitative prescribed performance control of waverider vehicles with actuator saturation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (4): 3538- 3548.
doi: 10.1109/TAES.2022.3153429 |
3 |
BU X W , QI Q , JIANG B X . A simplified finite-time fuzzy neural controller with prescribed performance applied to waverider aircraft[J]. IEEE Trans.on Fuzzy Systems, 2022, 30 (7): 2529- 2537.
doi: 10.1109/TFUZZ.2021.3089031 |
4 |
PARKER J T , SERRANI A , YURKOVICH S , et al. Control- oriented modeling of an air-breathing hypersonic hehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30 (3): 856- 869.
doi: 10.2514/1.27830 |
5 | LIAN C B, REN Z, SHAO X Y. Reference command tracking and simulation research of hypersonic cruise vehicle[C]//Proc. of the International Conference on Automatic Control and Artificial Intelligence, 2012: 1642-1646. |
6 | 张豪, 王鹏, 汤国建, 等. 高超声速变外形飞行器事件触发有限时间控制[J]. 航空学报, 2023, 44 (15): 333- 346. |
ZHANG H , WANG P , TANG G J , et al. Hypersonic variable-shape vehicle event triggers finite time control[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (15): 333- 346. | |
7 |
LIU J X , AN H , GAO Y B , et al. Adaptive control of hypersonic flight vehicles with limited angle of attack[J]. Transactions on Mechatronics, 2018, 23 (2): 883- 894.
doi: 10.1109/TMECH.2018.2800089 |
8 | WANG L, QI Y R, JIANG B. Robust adaptive control for non-minimum phase flexible air-breathing hypersonic vehicles[C]//Proc. of the Chinese Automation Congress, 2019: 3025-3030. |
9 |
TIAN B L , YIN L , WANG H . Finite-time reentry attitude control based on adaptive multivariable disturbance compensation[J]. Transactions on Industrial Electronics, 2015, 62 (9): 5889- 5898.
doi: 10.1109/TIE.2015.2442224 |
10 |
SHEN Q K , JIANG B , COCQUEMPOT V . Fault-tolerant control for T-S fuzzy systems with application to near-space hypersonic vehicle with actuator faults[J]. Transactions on Fuzzy Systems, 2012, 20 (4): 652- 665.
doi: 10.1109/TFUZZ.2011.2181181 |
11 |
BU X W , WU X Y , ZHU F J , et al. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors[J]. ISA Transactions, 2015, 59, 149- 159.
doi: 10.1016/j.isatra.2015.09.007 |
12 | CHEN M , WU Q X , JIANG C S , et al. Guaranteed transient performance based control with input saturation for near space vehicles[J]. Science China Information Sciences, 2014, 57 (5): 1- 12. |
13 |
AN H , LIU J X , WANG C H , et al. Approximate back-stepping fault-tolerant control of the flexible air-breathing hypersonic vehicle[J]. Transactions on Mechatronics, 2016, 21 (3): 1680- 1691.
doi: 10.1109/TMECH.2015.2507186 |
14 |
YU X , LI P , ZHANG Y M . The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles[J]. Transactions on Industrial Electronics, 2018, 65 (5): 4135- 4144.
doi: 10.1109/TIE.2017.2772192 |
15 |
BASIN M V , YU P , SHTESSEL Y B . Hypersonic missile adaptive sliding mode control using finite-and fixed-time obser-vers[J]. Transactions on Industrial Electronics, 2018, 65 (1): 930- 941.
doi: 10.1109/TIE.2017.2701776 |
16 |
GUO J G , YANG S J , GUO Z Y . Robust tracking for hypersonic vehicles subjected to mismatched uncertainties via fixed-time sliding mode control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235 (14): 2145- 2153.
doi: 10.1177/0954410021990239 |
17 |
KIM K S , REW K H , KIM S . Disturbance observer for estimating higher order disturbances in time series expansion[J]. Transactions on Automatic Control, 2010, 55 (8): 1905- 1911.
doi: 10.1109/TAC.2010.2049522 |
18 |
GUO Z Y , GUO J G , ZHOU J , et al. Reentry attitude tracking via coupling effect-triggered control subjected to bounded uncertainties[J]. International Journal of Systems Science, 2018, 49 (12): 2571- 2585.
doi: 10.1080/00207721.2018.1506065 |
19 | YANG G H, WANG X M. High-order disturbance observer-based attitude control with prescribed performance for hypersonic vehicle[C]//Proc. of the 40th Chinese Control Confe-rence, 2021: 7766-7771. |
20 | 徐品高. 新一代防空飞行器提高制导控制精度得需求与技术途径[J]. 战术飞行器技术, 2002, (3): 1- 8. |
XU P G . Requirements and technical approaches for improving guidance and control accuracy of new generation air defense aircraft[J]. Tactical aircraft technology, 2002, (3): 1- 8. | |
21 | HERMAN R, BUTLER J. Subsystem for the extended range interceptor missile, AIAA-92-2750[R]. Huntsville: RONALD, 1992. |
22 |
CASSEL L A . Applying jet interaction technology[J]. Journal of Spacecraft and Rockets, 2003, 40 (4): 523- 537.
doi: 10.2514/2.3992 |
23 | SCHROEDER W K, LIU K. An appropriate application of fuzzy logic: a missile autopilot for dual control implementation[C]// Proc. of the IEEE International Symposium on Intelligent Control Proceedings, 1994: 93-98. |
24 |
贺风华, 马克茂, 姚郁. 基于输出预测的姿控发动机控制律优化设计[J]. 航空学报, 2009, 30 (6): 1131- 1137.
doi: 10.3321/j.issn:1000-6893.2009.06.026 |
HE F H , MA K M , YAO Y . Optimal design of attitude control engine control law based on output prediction[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30 (6): 1131- 1137.
doi: 10.3321/j.issn:1000-6893.2009.06.026 |
|
25 |
马克茂, 贺风华. 弹体自旋条件下姿控发动机控制律设计[J]. 航空学报, 2009, 30 (10): 1816- 1822.
doi: 10.3321/j.issn:1000-6893.2009.10.004 |
MA K M , HE F H . Design of attitude control engine control law under missile body spin condition[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30 (10): 1816- 1822.
doi: 10.3321/j.issn:1000-6893.2009.10.004 |
|
26 | 周波华. 闭环轨控式直接侧向力气动力复合控制系统设计[D]. 上海: 上海交通大学, 2016. |
ZHOU B H. Design of closed-loop rail control direct lateral force and power compound control system[D]. Shanghai: Shanghai Jiaotong University, 2016. | |
27 |
WU T C , WANG H L , YU Y , et al. Quantized fixed-time fault-tolerant attitude control for hypersonic reentry vehicles[J]. Applied Mathematical Modelling, 2021, 98, 143- 160.
doi: 10.1016/j.apm.2021.04.033 |
28 |
GUO Z Y , ZHOU J , GUO J G , et al. Coupling-characterization-based robust attitude control scheme for hypersonic vehicles[J]. Transactions on Industrial Electronics, 2017, 64 (8): 6350- 6361.
doi: 10.1109/TIE.2017.2682031 |
29 |
GUO Z Y , GUO J G , ZHOU J , et al. Robust tracking for hypersonic reentry vehicles via disturbance estimation-triggered control[J]. Transactions on Aerospace and Electronic Systems, 2020, 56 (2): 1279- 1289.
doi: 10.1109/TAES.2019.2928605 |
30 |
GUO Z Y , MA Q W , GUO J G , et al. Performance-involved coupling effect triggered scheme for robust attitude control of HRV[J]. Transactions on Mechatronics, 2020, 25 (3): 1288- 1298.
doi: 10.1109/TMECH.2020.2973708 |
31 | CAO R H, XI Y, HU Q L, et al. Robust attitude control for hypersonic vehicles with coupling analysis[C]//Proc. of the 39th Chinese Control Conference, 2020: 6822-6826. |
32 | 韩京清, 袁露林. 非线性跟踪微分器[J]. 系统科学与数学, 1994, 14 (2): 177- 183. |
HAN J Q , YUAN L L . Nonlinear tracking differentiator[J]. Systems Science and Mathematics, 1994, 14 (2): 177- 183. | |
33 |
DONG W J , FARRELL J A , POLYCARPOU M M , et al. Command filtered adaptive backstepping[J]. Transactions on Control Systems Technology, 2012, 20 (3): 566- 580.
doi: 10.1109/TCST.2011.2121907 |
34 | MORENO J A, OSORIO M. A Lyapunov approach to second-order sliding mode controllers and observers[C]//Proc. of the IEEE 47th Conference on Decision and Control, 2008: 2856-2861. |
35 |
SHTESSEL Y , TALEB M , PLESTAN F . A novel adaptive-gain supertwisting sliding mode controller: methodology and application[J]. Automatica, 2012, 48 (5): 759- 769.
doi: 10.1016/j.automatica.2012.02.024 |
[1] | 李彦铃, 罗飞舟, 葛致磊. 基于鲁棒观测器的深度强化学习垂直起降运载器姿态稳定研究[J]. 系统工程与电子技术, 2024, 46(3): 1038-1047. |
[2] | 桂洋, 郑柏超, 高鹏. 基于NESO-LFDC的四旋翼无人机滑模姿态控制[J]. 系统工程与电子技术, 2024, 46(3): 1075-1083. |
[3] | 赵昱宇, 索超, 王雨潇. 基于微分平坦的高超声速飞行器跟踪控制方法[J]. 系统工程与电子技术, 2024, 46(3): 1084-1092. |
[4] | 陆浩然, 郑伟, 常晓华. 基于鲁棒精确微分器的分数阶滑模制导律设计[J]. 系统工程与电子技术, 2023, 45(1): 175-183. |
[5] | 王双双, 李春涛, 王震, 苏子康, 戴飞. 基于自适应动态逆的着舰控制器设计[J]. 系统工程与电子技术, 2022, 44(1): 218-225. |
[6] | 李纪强, 张国庆, 黄晨峰, 张卫东. 考虑执行器故障的无人帆船事件触发控制[J]. 系统工程与电子技术, 2022, 44(1): 242-249. |
[7] | 徐扬, 韩明仁, 邵将, 罗德林. 基于MRPs的卫星集群系统姿态对抗一致性控制[J]. 系统工程与电子技术, 2021, 43(7): 1904-1911. |
[8] | 赵曰强, 安实, 麦强, 许庆彦, 郭亚男. 基于ADC法的防空导弹武器系统效能建模[J]. 系统工程与电子技术, 2020, 42(9): 2003-2012. |
[9] | 李宗星, 张锐. 基于Riccati方程的导弹自适应姿态控制[J]. 系统工程与电子技术, 2020, 42(6): 1358-1365. |
[10] | 鲁力, 王洁, 袁成人, 吴亚晖. 基于反双曲正切函数的跟踪微分器设计与应用[J]. 系统工程与电子技术, 2020, 42(12): 2875-2883. |
[11] | 谭诗利, 雷虎民, 王鹏飞. 基于正切Sigmoid函数的跟踪微分器[J]. 系统工程与电子技术, 2019, 41(7): 1590-1596. |
[12] | 陶佳伟, 张涛. 具有预设性能的近距离星间相对姿轨耦合控制[J]. 系统工程与电子技术, 2019, 41(5): 1103-1109. |
[13] | 舒适, 房建成, 张伟, 刘刚, 钱勇, 张健, 崔培玲. 基于MSCMG的复合补偿控制提高图像配准方法[J]. 系统工程与电子技术, 2019, 41(12): 2827-2834. |
[14] | 贾庆贤, 张承玺, 李化义, 张迎春. 基于新型学习观测器的卫星执行机构故障重构[J]. 系统工程与电子技术, 2019, 41(12): 2835-2841. |
[15] | 董朝阳, 马鸣宇, 王青, 周敏. 含有通信时滞的多航天器SO(3)姿态协同控制[J]. 系统工程与电子技术, 2018, 40(9): 2032-2039. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||