系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (7): 2401-2412.doi: 10.12305/j.issn.1001-506X.2024.07.22
• 系统工程 • 上一篇
陈旭1,2, 李岳1,2,*, 张书锋1,2
收稿日期:
2023-06-26
出版日期:
2024-06-28
发布日期:
2024-07-02
通讯作者:
李岳
作者简介:
陈旭(1995—), 男, 硕士研究生, 主要研究方向为装备综合保障、可靠性试验与评估Xu CHEN1,2, Yue LI1,2,*, Shufeng ZHANG1,2
Received:
2023-06-26
Online:
2024-06-28
Published:
2024-07-02
Contact:
Yue LI
摘要:
针对无人机系统组成结构复杂、影响其可靠性可用性的维修保障因素较多的问题, 基于设备寿命分布假设, 构建了考虑预防性维修和起飞前故障检查的系统平均故障间隔时间(mean time between failures, MTBF)和使用可用度解析模型。并模拟无人机的维修过程, 采用蒙特卡罗仿真的方法进行MTBF和使用可用度的仿真分析。解析与仿真两种方法的结果具有较好的一致性, 可为无人机确定保障方案提供技术途径。
中图分类号:
陈旭, 李岳, 张书锋. 无人机系统MTBF和使用可用度的建模与仿真[J]. 系统工程与电子技术, 2024, 46(7): 2401-2412.
Xu CHEN, Yue LI, Shufeng ZHANG. Modeling and simulation of UAV system's MTBF and operational availability[J]. Systems Engineering and Electronics, 2024, 46(7): 2401-2412.
表1
无人机关键设备寿命分布"
序号i | 设备名称 | 故障数量 | 单机数量 | 总时间/h | MTBFS-i/h | 寿命类型 | 寿命参数 |
1 | 交流电源 | 1 | 1 | 1 000 | 1 000 | 指数分布 | λ0=1.0×10-3 |
2 | 飞行规划系统 | 2 | 1 | 1 000 | 500 | 指数分布 | λ0=2.0×10-3 |
3 | 大气数据系统 | 2 | 1 | 1 000 | 500 | 指数分布 | λ0=2.0×10-3 |
4 | 天线收发设备 | 12 | 1 | 1 000 | 84 | 指数分布 | λ0=1.2×10-2 |
5 | 数据处理设备 | 1 | 1 | 1 000 | 1 000 | 指数分布 | λ0=1.0×10-3 |
6 | 信息获取设备 | 1 | 1 | 1 000 | 1 000 | 指数分布 | λ0=1.0×10-3 |
7 | 信息对抗设备 | 3 | 1 | 1 000 | 334 | 指数分布 | λ0=3.0×10-3 |
8 | 火力打击设备 | 2 | 1 | 1 000 | 500 | 指数分布 | λ0=2.0×10-3 |
9 | 直流电源 | 2 | 3 | 3 000 | 1 500 | 指数分布 | λ0=6.5×10-4 |
10 | 高度表 | 11 | 2 | 2 000 | 182 | 指数分布 | λ0=5.5×10-3 |
11 | 惯性导航子系统 | 7 | 3 | 3 000 | 429 | 指数分布 | λ0=2.4×10-3 |
12 | 卫星导航子系统 | 4 | 3 | 3 000 | 750 | 指数分布 | λ0=1.4×10-3 |
13 | 光电导航子系统 | 6 | 3 | 3 000 | 500 | 指数分布 | λ0=2.0×10-03 |
14 | 机翼 | 1 | 1 | 1 000 | 1 000 | 威布尔分布 | m=2.5, η0=1 127 |
15 | 起落架 | 2 | 1 | 1 000 | 500 | 威布尔分布 | m=3, η0=564 |
16 | 螺旋桨 | 6 | 1 | 1 000 | 167 | 威布尔分布 | m=2, η0=188 |
17 | 滑油子系统 | 1 | 1 | 1 000 | 1 000 | 威布尔分布 | m=3, η0=1 127 |
18 | 进排气子系统 | 1 | 1 | 1 000 | 1 000 | 威布尔分布 | m=3, η0=1 127 |
19 | 冷却液子系统 | 3 | 1 | 1 000 | 334 | 威布尔分布 | m=2.5, η0=376 |
20 | 联轴器 | 5 | 1 | 1 000 | 200 | 威布尔分布 | m=2.5, η0=225 |
21 | 点火模块 | 2 | 1 | 1 000 | 500 | 威布尔分布 | m=2, η0=564 |
22 | 发电机 | 5 | 1 | 1 000 | 200 | 威布尔分布 | m=2, η0=225 |
23 | 舵机 | 2 | 1 | 1 000 | 500 | 威布尔分布 | m=3, η0=564 |
24 | 天线伺服系统 | 2 | 1 | 1 000 | 500 | 威布尔分布 | m=2.5, η0=564 |
25 | 陀螺组件 | 21 | 3 | 3 000 | 143 | 威布尔分布 | m=2.5, η0=161 |
表3
无人机关键设备故障级别占比"
序号i | 机件名称 | pⅡ | pⅢ | pⅣ |
1 | 交流电源 | 0.2 | 0 | 0.8 |
2 | 飞行规划系统 | 0.2 | 0 | 0.8 |
3 | 大气数据系统 | 0 | 0 | 1 |
4 | 天线收发设备 | 0 | 0.3 | 0.7 |
5 | 数据处理设备 | 0 | 0 | 1 |
6 | 信息获取设备 | 0 | 0 | 1 |
7 | 信息对抗设备 | 0 | 0 | 1 |
8 | 火力打击设备 | 0 | 0 | 1 |
9 | 直流电源(×3) | 0 | 0.2 | 0.8 |
10 | 高度表(×2) | 0 | 0.3 | 0.7 |
11 | 惯性导航子系统(×3) | 0.4 | 0 | 0.6 |
12 | 卫星导航子系统(×3) | 0 | 0.2 | 0.8 |
13 | 光电导航子系统(×3) | 0 | 0.2 | 0.8 |
14 | 机翼 | 0 | 0 | 1 |
15 | 起落架 | 0.6 | 0 | 0.4 |
16 | 螺旋桨 | 0 | 0.3 | 0.7 |
17 | 滑油子系统 | 0 | 0.2 | 0.8 |
18 | 进排气子系统 | 0 | 0.3 | 0.7 |
19 | 冷却液子系统 | 0.4 | 0.1 | 0.5 |
20 | 联轴器 | 0.4 | 0 | 0.6 |
21 | 点火模块 | 0.4 | 0 | 0.6 |
22 | 发电机 | 0 | 0.1 | 0.9 |
23 | 舵机 | 0 | 0.3 | 0.7 |
24 | 天线伺服系统 | 0 | 0 | 1 |
25 | 陀螺组件(×3) | 0 | 0.2 | 0.8 |
表4
重复试验仿真结果"
组别 | W | TBR | MTBF′ | A′ |
1 | 644 | 67 666 | 10.36 | 0.676 7 |
2 | 606 | 69 764 | 11.01 | 0.697 6 |
3 | 575 | 69 993 | 11.60 | 0.699 9 |
4 | 626 | 68 537 | 10.65 | 0.685 4 |
5 | 629 | 67 715 | 10.60 | 0.677 2 |
6 | 642 | 67 895 | 10.39 | 0.679 0 |
7 | 616 | 69 044 | 10.83 | 0.690 4 |
8 | 642 | 67 141 | 10.39 | 0.671 4 |
9 | 617 | 68 578 | 10.81 | 0.685 8 |
10 | 622 | 68 263 | 10.72 | 0.682 6 |
100组数据均值 | 10.79 | 0.688 0 | ||
100组数据方差 | 0.31 | 2.48×10-4 | ||
100组数据预计绝对误差 | 0.06 | 1.6×10-3 | ||
解析值 | 10.61 | 0.680 7 |
17 | 焦健, 王自力. 军用飞机使用可用度仿真论证[J]. 北京航空航天大学学报, 2006, (1): 112- 116. |
JIAO J , WANG Z L . Operational availability demonstration of military airplane based on simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, (1): 112- 116. | |
18 | BIAN L , WANG G J , LIU P . Reliability analysis for k-out-of- n (G) systems subject to dependent competing failure processes[J]. Computers & Industrial Engineering, 2023, 177, 109084. |
19 | 中国人民解放军总装备部. 电子设备可靠性预计手册: GJB/Z 299C- 2006[S]. 北京: 总装备部军标出版发行部, 2006. |
The General Armaments Department of the PLA. Reliability prediction handbook for electronic equipment: GJB/Z 299C- 2006[S]. Beijing: Army Standards Press of General Armament Department, 2006. | |
20 | 中华人民共和国国家质量监督检验检疫总局. 威布尔分析: GB/T34987-2017[S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Weibull analysis: GB/T34987-2017[S]. Beijing: Standards Press of China, 2017. | |
21 | 徐宗昌. 装备保障性工程与管理[M]. 北京: 国防工业出版社, 2010. |
XU Z C . Supportability engineering and management for equipment[M]. Beijing: National Defense Industry Press, 2010. | |
22 |
JESUS M , BARRAZA C , MANUEL R , et al. Fatigue-life prediction of mechanical element by using the Weibull distribution[J]. Applied Sciences, 2020, 10 (18): 6384.
doi: 10.3390/app10186384 |
23 | 谢干跃, 宁书存, 李仲杰, 等. 可靠性维修性保障性测试性安全性概论[M]. 北京: 国防工业出版社, 2012. |
XIE G Y , NING S C , LI Z J , et al. Introduction to reliability, maintainability, availability, testability, and safety[M]. Beijing: National Defense Industry Press, 2012. | |
24 | 中国人民解放军总装备部. 可靠性维修性保障性术语: GJB451A- 2005[S]. 北京: 总装备部军标出版发行部, 2005. |
The General Armaments Department of the PLA. Realiability, maintainability and supportability: GJB451A-2005[S]. Beijing: Army Standards Press of General Armament Department, 2005. | |
25 | 陈旭, 张书锋, 李岳, 等. 正态型寿命分布设备的可用性分析[J]. 兵工学报, 2024, 45 (3): 986- 996. |
CHEN X , ZHANG S F , LI Y , et al. Availability analysis for equipment with normal life distribution[J]. Acta Armamentarii, 2024, 45 (3): 986- 996. | |
26 | 牟煜明. 飞行前故障检测系统的设计与实现[D]. 成都: 电子科技大学, 2021. |
MU Y M. Research on design and implementation of pre-flight fault detection system[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
27 | 姜羿帆. 航空相机内场检测仪设计研究[D]. 吉林: 吉林大学, 2016. |
JIANG Y F. The diagnostic device design and research for aerial camera[D]. Jilin: Jilin University, 2016. | |
28 | 郭文彬, 刘东, 王宇健. 功能交联条件下飞机混合增强故障诊断方法[J]. 测控技术, 2022, 41 (10): 107- 113. |
GUO W B , LIU D , WANG Y J . Hybrid enhancement fault diagnosis method of aircraft under functional crosslink condition[J]. Measurement & Control Technology, 2022, 41 (10): 107- 113. | |
1 | 李正. 无人机后勤保障[M]. 西安: 西北工业大学出版社, 2018. |
LI Z . UAV logistic support[M]. Xi'an: Northwestern Polytechnical University Press, 2018. | |
2 | VALAVANIS K P , VACHTSEVANOS G J . Handbook of unmanned aerial vehicles[M]. Berlin: Springer Dordrecht, 2015. |
3 |
DUENCKEL J R , SOILEAU R , PITTMAN J D . Preventive maintenance for electrical reliability: a proposed metric using mean time between failures plus finds[J]. IEEE Industry Applications Magazine, 2017, 23 (4): 45- 56.
doi: 10.1109/MIAS.2016.2600695 |
4 |
王永虎, 焦敬义, 于博文. 基于粒子群算法的装备预防性维修策略研究[J]. 火力与指挥控制, 2021, 46 (4): 116- 121.
doi: 10.3969/j.issn.1002-0640.2021.04.021 |
WANG Y H , JIAO J Y , YU B W . Research on equipment preventive maintenance strategy based on particle swarm optimization algorithm fire[J]. Control & Command Control, 2021, 46 (4): 116- 121.
doi: 10.3969/j.issn.1002-0640.2021.04.021 |
|
5 | 王天博, 张国峰, 宁作江, 等. 机器人焊枪预防性维修策略[J]. 机械设计, 2022, 39 (4): 75- 84. |
WANG T B , ZHANG G F , NING Z J , et al. Preventive maintenance strategy for robot welding guns[J]. Journal of Machine Design, 2022, 39 (4): 75- 84. | |
6 | 刘超, 白强, 马庆锋, 等. 磨床冷却系统的可靠性建模及评估研究[J]. 制造技术与机床, 2019, (3): 9- 13. |
LIU C , BAI Q , MA Q F , et al. Research on reliability modeling and evaluation of grinder cooling system[J]. Manufacturing Technology & Machine Tool, 2019, (3): 9- 13. | |
7 |
郑莹莹, 谢启源, 罗圣峰, 等. 基于MTBF的光电感烟探测器可靠性研究[J]. 火灾科学, 2019, 28 (1): 60- 68.
doi: 10.3969/j.issn.1004-5309.2019.01.08 |
ZHENG Y Y , XIE Q Y , LUO S F , et al. Reliability research of photoelectric smoke detector based on MTBF[J]. Fire Safety Science, 2019, 28 (1): 60- 68.
doi: 10.3969/j.issn.1004-5309.2019.01.08 |
|
8 |
DUER S , WOZNIAK M , PAS J , et al. Reliability testing of wind farm devices based on the mean time between failures (MTBF)[J]. Energies, 2023, 16 (4): 1659.
doi: 10.3390/en16041659 |
9 | ZHOU Y Q , HUANG J X , ZHOU L , et al. Reliability evaluation method of PMFSM system based on hidden Markov[J]. International Journal of Applied Electromagnetics & Mechanics, 2022, 70 (3): 1- 23. |
10 | 杨揆, 陈燕婷, 高飞, 等. 火炮可靠性详细预计中MTBF等效转换方法[J]. 火炮发射与控制学报, 2018, 39 (4): 96- 99. |
YANG K , CHEN Y T , GAO F , et al. An equivalent conversion method of MTBF in the detailed reliability prediction of gun[J]. Journal of Gun Launch & Control, 2018, 39 (4): 96- 99. | |
11 | HU J, LU K Z, SU H J. Reliability analysis of swarm self-security intelligence system based on fault tree and Monte Carlo simulation[C]//Proc. of the 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science, 2022: 184-187. |
12 |
李景奎, 蔺瑞管, 段飞飞, 等. 考虑可靠度和可用度的民机维修间隔优化研究[J]. 机械设计与制造, 2021, (1): 282- 285.
doi: 10.3969/j.issn.1001-3997.2021.01.065 |
LI J K , LIN R G , DUAN F F , et al. Research on optimization of civil aircraft maintenance interval considering reliability and availabilitys[J]. Machinery Design & Manufacture, 2021, (1): 282- 285.
doi: 10.3969/j.issn.1001-3997.2021.01.065 |
|
13 | 王蕴, 王乃超, 马麟, 等. 考虑备件约束的多部件串联系统使用可用度计算方法[J]. 航空学报, 2015, (4): 1195- 1201. |
WANG Y , WANG N C , MA L , et al. Operational availability calculation methods of various series systems under the constraint of spare parts[J]. Acta Aeronautica et Astronautica Sinica, 2015, (4): 1195- 1201. | |
14 | 刘瑞, 马麟, 康锐, 等. 基于PHM的航空装备可用度影响因素分析方法[J]. 北京航空航天大学学报, 2011, 37 (10): 1238- 1244. |
LIU R , MA L , KANG R , et al. Analysis method for influential factors of aviation equipment availability based prognostics and health management[J]. Acta Aeronautica et Astronautica Sinica, 2011, 37 (10): 1238- 1244. | |
15 | 程文鑫, 王寄明, 郝兆钧. 基于马尔可夫理论的舰炮装备使用可用度预测方法[J]. 火炮发射与控制学报, 2022, 43 (6): 76- 80. |
CHENG W X , WANG J M , HAO Z J . A method for predicting the availability of naval guns based on the Markov theory[J]. Journal of Gun Launch & Control, 2022, 43 (6): 76- 80. | |
16 |
YUAN L . Reliability analysis for a k-out-of-n: G system with redundant dependency and repairmen having multiple vacations[J]. Applied Mathematics and Computation, 2012, 218 (24): 11959- 11969.
doi: 10.1016/j.amc.2012.06.006 |
29 |
YANG L , WEI F P , QIU Q G . Mission risk control via joint optimization of sampling and abort decisions[J]. Risk Analysis, 2024, 44 (3): 666- 685.
doi: 10.1111/risa.14187 |
30 | GREGORY L , MAXIM F , LI Y F . Balancing mission success probability and risk of system loss by allocating redundancy in systems operating with a rescue option[J]. Reliability Engineering & System Safety, 2020, 195, 106694. |
31 | 周江华, 苗育红. 离散事件动态系统性能评估与仿真[M]. 北京: 科学出版社, 2016. |
ZHOU J H , MIAO Y H . Performance assessment and simulation of discrete event dynamics systems[M]. Beijing: Science Press, 2016. | |
32 | 陈循. 机电系统可靠性工程[M]. 北京: 科学出版社, 2010. |
CHEN X . Reliability engineering of mechatronics system[M]. Beijing: Science Press, 2010. |
[1] | 董恩志, 程中华, 王荣财. 考虑经济相关性的复杂二维保修装备组合维修策略[J]. 系统工程与电子技术, 2022, 44(7): 2219-2228. |
[2] | 李军亮, 祝华远, 王利明, 王灵芝. 考虑混合维修策略的复杂系统区间可用度[J]. 系统工程与电子技术, 2020, 42(5): 1190-1196. |
[3] | 翟亚利, 张志华, 李广宇. 基于有限备件的战备完好性模型[J]. 系统工程与电子技术, 2019, 41(5): 1043-1048. |
[4] | 杨志远, 赵建民, 程中华. 退化相关多部件系统预防性维修决策模型[J]. 系统工程与电子技术, 2018, 40(4): 823-832. |
[5] | 杨晶, 黎放, 狄鹏. 舰艇编队保障系统的备件短缺风险研究[J]. Journal of Systems Engineering and Electronics, 2012, 34(4): 743-748. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||