系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (7): 2393-2400.doi: 10.12305/j.issn.1001-506X.2024.07.21
• 系统工程 • 上一篇
许强强, 柴华
收稿日期:
2022-12-13
出版日期:
2024-06-28
发布日期:
2024-07-02
通讯作者:
许强强
作者简介:
许强强(1990—), 男, 讲师, 博士, 主要研究方向为任务规划与评估Qiangqiang XU, Hua CHAI
Received:
2022-12-13
Online:
2024-06-28
Published:
2024-07-02
Contact:
Qiangqiang XU
摘要:
针对车载光学测量设备任务调度方案优化问题, 提出了一种基于非支配排序的遗传算法(non-dominated sorting genetic algorithm Ⅱ, NSGA-Ⅱ)的多目标遗传算法。首先, 建立了包含约束、优化指标在内的观测任务调度问题的数学模型。其中, 针对多优化指标进行巧妙处理, 将某些不作为最优指标的优化指标作为指标约束进行处理。其次, 基于NSGA-Ⅱ中的快速非优超排序方法计算多目标适应度函数与选择算子, 多目标优化求解得到的Pareto最优解集即为任务调度方案集。最后, 通过仿真算例对所提算法进行了求解验证。仿真结果表明, 该算法能够有效解决任务调度方案优化问题, 为车载光学测量设备的工程实践提供了一定的参考。
中图分类号:
许强强, 柴华. 基于NSGA-Ⅱ的车载光学测量设备任务调度方案优化[J]. 系统工程与电子技术, 2024, 46(7): 2393-2400.
Qiangqiang XU, Hua CHAI. Optimization of task dispatch plan for vehicular optical observation equipment based on NSGA-Ⅱ[J]. Systems Engineering and Electronics, 2024, 46(7): 2393-2400.
表4
全部观测窗口"
窗口编号 | 对应关系 | 开始时刻 | 结束时刻 | 窗口时长/s |
1 | S1, T1 | 2018/6/4 10:58:40 | 2018/6/4 10:58:52 | 12 |
2 | S1, T1 | 2018/6/5 11:07:19 | 2018/6/5 11:07:37 | 18 |
3 | S1, T1 | 2018/6/6 03:24:00 | 2018/6/6 03:24:30 | 30 |
4 | S1, T2 | 2018/6/5 16:57:45 | 2018/6/5 16:58:14 | 29 |
5 | S1, T2 | 2018/6/7 09:23:14 | 2018/6/7 09:23:43 | 29 |
6 | S1, T3 | 2018/6/6 22:56:58 | 2018/6/6 22:57:28 | 30 |
7 | S1, T3 | 2018/6/7 15:13:53 | 2018/6/7 15:14:07 | 14 |
8 | S1, T4 | 2018/6/1 21:45:26 | 2018/6/1 21:45:52 | 26 |
9 | S2, T1 | 2018/6/2 10:44:26 | 2018/6/2 10:44:45 | 19 |
10 | S2, T1 | 2018/6/6 01:51:08 | 2018/6/6 01:51:19 | 11 |
11 | S2, T2 | 2018/6/3 16:43:34 | 2018/6/3 16:44:04 | 30 |
12 | S2, T2 | 2018/6/7 07:50:13 | 2018/6/7 07:50:41 | 28 |
13 | S2, T3 | 2018/6/4 22:42:50 | 2018/6/4 22:43:15 | 25 |
14 | S2, T4 | 2018/6/1 20:12:23 | 2018/6/1 20:12:52 | 29 |
15 | S2, T4 | 2018/6/5 04:33:26 | 2018/6/5 04:33:37 | 11 |
16 | S3, T1 | 2018/6/2 01:14:34 | 2018/6/2 01:15:03 | 29 |
17 | S3, T1 | 2018/6/3 10:56:06 | 2018/6/3 10:56:22 | 16 |
18 | S3, T2 | 2018/6/3 07:13:49 | 2018/6/3 07:14:14 | 25 |
19 | S3, T2 | 2018/6/4 16:55:12 | 2018/6/4 16:55:42 | 30 |
20 | S3, T3 | 2018/6/5 22:54:30 | 2018/6/5 22:54:51 | 21 |
21 | S3, T4 | 2018/6/4 19:03:30 | 2018/6/4 19:03:59 | 29 |
22 | S3, T4 | 2018/6/6 04:45:07 | 2018/6/6 04:45:12 | 5 |
23 | S4, T1 | 2018/6/1 09:03:20 | 2018/6/1 09:03:45 | 25 |
24 | S4, T1 | 2018/6/3 01:28:41 | 2018/6/3 01:29:01 | 20 |
25 | S4, T2 | 2018/6/2 15:02:31 | 2018/6/2 15:03:01 | 30 |
26 | S4, T2 | 2018/6/3 07:19:10 | 2018/6/3 07:19:35 | 25 |
27 | S4, T3 | 2018/6/3 21:01:46 | 2018/6/3 21:02:12 | 26 |
28 | S4, T3 | 2018/6/4 13:18:21 | 2018/6/4 13:18:51 | 30 |
29 | S4, T4 | 2018/6/4 02:52:18 | 2018/6/4 02:52:39 | 21 |
30 | S4, T4 | 2018/6/4 19:09:04 | 2018/6/4 19:09:06 | 2 |
31 | S4, T4 | 2018/6/5 19:17:37 | 2018/6/5 19:17:57 | 20 |
表5
观测时长最长对应的观测方案"
设备 | 窗口编号 | 对应关系 | 开始时刻 | 结束时刻 | 窗口时长/s |
E1 | 9 | S2, T1 | 2018/6/2 10:44:26 | 2018/6/2 10:44:45 | 19 |
E1 | 27 | S4, T3 | 2018/6/3 21:01:46 | 2018/6/3 21:02:12 | 26 |
E1 | 28 | S4, T3 | 2018/6/4 13:18:21 | 2018/6/4 13:18:51 | 30 |
E1 | 3 | S1, T1 | 2018/6/6 03:24:00 | 2018/6/6 03:24:30 | 30 |
E2 | 23 | S4, T1 | 2018/6/1 09:03:20 | 2018/6/1 09:03:45 | 25 |
E2 | 14 | S2, T4 | 2018/6/1 20:12:23 | 2018/6/1 20:12:52 | 29 |
E2 | 24 | S4, T1 | 2018/6/3 01:28:41 | 2018/6/3 01:29:01 | 20 |
E3 | 1 | S1, T1 | 2018/6/4 10:58:40 | 2018/6/4 10:58:52 | 12 |
E3 | 2 | S1, T1 | 2018/6/5 11:07:19 | 2018/6/5 11:07:37 | 18 |
E3 | 6 | S1, T3 | 2018/6/6 22:56:58 | 2018/6/6 22:57:28 | 30 |
E4 | 25 | S4, T2 | 2018/6/2 15:02:31 | 2018/6/2 15:03:01 | 30 |
E4 | 26 | S4, T2 | 2018/6/3 07:19:10 | 2018/6/3 07:19:35 | 25 |
E5 | 29 | S4, T4 | 2018/6/4 02:52:18 | 2018/6/4 02:52:39 | 21 |
E6 | 13 | S2, T3 | 2018/6/4 22:42:50 | 2018/6/4 22:43:15 | 25 |
E6 | 31 | S4, T4 | 2018/6/5 19:17:37 | 2018/6/5 19:17:57 | 20 |
E6 | 10 | S2, T1 | 2018/6/6 01:51:08 | 2018/6/6 01:51:19 | 11 |
E6 | 12 | S2, T2 | 2018/6/7 07:50:13 | 2018/6/7 07:50:41 | 28 |
1 | 罗剑, 于小红, 王杰娟. 多平台空间目标观测协同调度问题[J]. 火力指挥与控制, 2021, 46 (12): 81- 87. |
LUO J , YU X H , WANG J J . Cooperative scheduling problem space target observation of multi-platform[J]. Fire Control & Command Control, 2021, 46 (12): 81- 87. | |
2 |
崔嵩. 船载空间目标观测系统的任务规划[J]. 电讯技术, 2021, 61 (12): 1514- 1520.
doi: 10.3969/j.issn.1001-893x.2021.12.008 |
CUI S . Mission planning of shipborne space target observation system[J]. Telecommunication Engineering, 2021, 61 (12): 1514- 1520.
doi: 10.3969/j.issn.1001-893x.2021.12.008 |
|
3 | 刘莹奇. 轻型车载大口径光电跟测系统光学设计[J]. 光学技术, 2012, 38 (5): 583- 587. |
LIU Y Q . Optical design of electro-optical vehicle-based tracking system with large aperture and lightweight[J]. Optical Technique, 2012, 38 (5): 583- 587. | |
4 | 刘莹奇, 王志, 刘欣悦, 等. 米级车载高分辨光电成像系统光学设计[J]. 红外与激光工程, 2011, 40 (8): 1512- 1516. |
LIU Y Q , WANG Z , LIU X Y , et al. Optical design of vehicle-based high resolution E-O imaging system using meter class telescope[J]. Infrared and Laser Engineering, 2011, 40 (8): 1512- 1516. | |
5 | 柴华, 宋旭民, 赵乾, 等. 车载光学测量设备任务调度问题建模与求解[J]. 国防科技大学学报, 2021, 43 (5): 1- 9. |
CHAI H , SONG X M , ZHAO Q , et al. Modeling and solving for task dispatch problem of vehicular optical observation equipment[J]. Journal of National University of Defense Technology, 2021, 43 (5): 1- 9. | |
6 | SAHIN M A, LEBLEBICIOGLU K. A standard expert system for weapon target assignment problem[C]//Proc. of the International Symposium on Performance Evaluation of Computer & Telecommunication Systems, 2009: 221-224. |
7 |
LU Y P , CHEN D Z . A new exact algorithm for the weapon-target assignment problem[J]. Omega, 2021, 98, 102138.
doi: 10.1016/j.omega.2019.102138 |
8 | HAMZEHI S, BOGENBERGER K, FR ANECK P, et al. Combinatorial reinforcement learning of linear assignment problems[C]// Proc. of the IEEE Intelligent Transportation Systems Conference, 2019: 3314-3321. |
9 |
SUMMERS D S , ROBBINS M J , LUNDAY B J . An approximate dynamic progmming approach for comparing firing policies in a networked air defense environment[J]. Computers and Operations Research, 2020, 117, 104890.
doi: 10.1016/j.cor.2020.104890 |
10 |
LEBOUCHER C , SHIN H S , MENEC S L , et al. Optimal weapon target assignment based on an geometric approach[J]. IFAC Proceedings Volumes, 2013, 46 (19): 341- 346.
doi: 10.3182/20130902-5-DE-2040.00037 |
11 |
SHALUMOV V , SHIMA T . Weapon-target-allocation strategies in multi-agent target-missile-defender engagement[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (10): 2452- 2464.
doi: 10.2514/1.G002598 |
12 | HU X W, LUO P C, ZHANG X N. IACO algorithm for weapon-target assignment problem in air combat[C]//Proc. of the 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, 2018: 35-40. |
13 |
KLINE A G , AHNER D K , LUNDAY B J , et al. Real-rime heuristic algorithms for the static weapon target assignment problem[J]. Journal of Heuristics, 2019, 25 (3): 377- 397.
doi: 10.1007/s10732-018-9401-1 |
14 |
AHNER D K , PARSON C R . Optimal multi-stage allocation of weapons to targets using adaptive dynamic programming[J]. Optimization Letters, 2015, 9 (8): 1689- 1701.
doi: 10.1007/s11590-014-0823-x |
15 |
CHANG T Q , KONG D P , HAO N , et al. Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization[J]. Applied Soft Computing, 2018, 70, 845- 863.
doi: 10.1016/j.asoc.2018.06.014 |
16 |
XIN B , WANG Y P , CHEN J . An efficient marginal-return-based constructive heuristic to solve the sensor-weapon-target assignment problem[J]. IEEE Trans.on System, Man, and Cybernetics: Systems, 2019, 49 (12): 2536- 2547.
doi: 10.1109/TSMC.2017.2784187 |
17 |
LI X Y , ZHOU D Y , YANG Z , et al. A novel genetic algorithm for the synthetical sensor-weapon-target assignment problem[J]. Applied Sciences, 2019, 9 (18): 3803.
doi: 10.3390/app9183803 |
18 |
ZHANG K , ZHOU D Y , YANG Z , et al. Constrained multi-objective weapon target assignment for area targets by efficient evolutionary algorithm[J]. IEEE Access, 2019, 7, 176339- 176360.
doi: 10.1109/ACCESS.2019.2955482 |
19 |
LI J , XIN B , PARDALOS P M , et al. Solving bi-objective uncertain stochastic resource allocation problems by the CVaR-based risk measure and decomposition-based multi-objective evolutionary algorithms[J]. Annals of Operations Research, 2021, 296, 639- 666.
doi: 10.1007/s10479-019-03435-4 |
20 |
XU W Q , CHEN C , DING S X , et al. A bi-objective dynamic collaborative task assignment under uncertainty using modified MOEA/D with heuristic initialization[J]. Expert Systems with Applications, 2020, 140, 112844.
doi: 10.1016/j.eswa.2019.112844 |
21 | FU G Y , WANG C , ZHANG D Q , et al. A multi-objective particle swam optimization algorithm based on multi-population coevolution for weapon-target assignment[J]. Mathematical Problems in Engineering, 2019, 2019 (1): 1- 11. |
22 |
ZHANG K , ZHOU D Y , YANG Z , et al. Efficient decision approaches for asset-based dynamic weapon target assignment by a receding horizon and marginal return heuristic[J]. Electronics, 2020, 9 (9): 1511.
doi: 10.3390/electronics9091511 |
23 |
KLINE A , AHNER D , HILL R . The weapon-target assignment problem[J]. Computers and Operations Research, 2019, 105, 226- 236.
doi: 10.1016/j.cor.2018.10.015 |
24 | 王储, 南英, 许航. 一种新的精英遗传算法及在多弹拦截分配策略的应用[J]. 航天控制, 2021, 39 (4): 59- 65. |
WANG C , NAN Y , XU H . A new elite genetic algorithm and its application in multi-missile interception assignment strategy[J]. Aerospace Control, 2021, 39 (4): 59- 65. | |
25 | 陈曼, 周凤星, 张成尧. 改进MOPSO的联合火力打击目标分配[J]. 火力指挥与控制, 2019, 44 (9): 125- 129. |
CHEN M , ZHOU F X , ZHANG C Y . Improved MOPSO joint fire strike target assignment[J]. Fire Control & Command Control, 2019, 44 (9): 125- 129. | |
26 | 陈曼, 周凤星. 改进粒子群算法的舰载武器目标分配[J]. 火力指挥与控制, 2018, 43 (11): 72- 76. |
CHEN M , ZHOU F X . Shipborne weapon target assignment based on improved particle swarm optimization[J]. Fire Control & Command Control, 2018, 43 (11): 72- 76. | |
27 | 张彦芳, 闫德恒, 王冀扬, 等. 一种基于蚁群算法的准动态防空武器分配算法[J]. 火力指挥与控制, 2016, 41 (9): 112- 116. |
ZHANG Y F , YAN D H , WANG J Y , et al. A quasi-dynamic defense weapon assignment based on ant-colony optimization[J]. Fire Control & Command Control, 2016, 41 (9): 112- 116. | |
28 |
吴文海, 郭晓峰, 周思羽, 等. 改进差分进化算法求解武器目标分配问题[J]. 系统工程与电子技术, 2021, 43 (4): 1012- 1021.
doi: 10.12305/j.issn.1001-506X.2021.04.18 |
WU W H , GUO X F , ZHOU S Y , et al. Improved differential evolution algorithm for solving weapon target assignment pro-blem[J]. Systems Engineering and Electronics, 2021, 43 (4): 1012- 1021.
doi: 10.12305/j.issn.1001-506X.2021.04.18 |
|
29 | 王力超, 乔勇军, 李永胜. 基于CE-CAPSO武器目标分配优化算法[J]. 火力指挥与控制, 2020, 45 (11): 82- 87. |
WANG L C , QIAO Y J , LI Y S . Optimization algorithm for weapon target assignment based on CE-CAPSO[J]. Fire Control & Command Control, 2020, 45 (11): 82- 87. | |
30 | 邱少明, 刘良成, 张学翠, 等. 基于改进鲸鱼优化算法的武器目标分配[J]. 火力指挥与控制, 2021, 46 (7): 27- 31. |
QIU S M , LIU L C , ZHANG X C , et al. Research on weapon target based on improved whale optimization algorithm[J]. Fire Control & Command Control, 2021, 46 (7): 27- 31. | |
31 | 刘双双, 许瑞明, 潘俊杰. 基于小生境蝙蝠算法的联合远程打击武器目标分配问题建模与求解[J]. 装备学院学报, 2017, 28 (2): 93- 98. |
LIU S S , XU R M , PAN J J . Research on the modeling and solving of the joint long-range strike weapon target assignment problem based on the niche bat algorithm[J]. Journal of Equipment Academy, 2017, 28 (2): 93- 98. | |
32 | 张先剑. 空陆攻防博弈的动态武器目标分配[J]. 国防科技大学学报, 2019, 41 (2): 185- 190. |
ZHANG X J . Land defense weapon versus target assignment against air attack[J]. Journal of National University of Defense Technology, 2019, 41 (2): 185- 190. | |
33 | GUO X H , JI M J , ZHAO Z W , et al. Global path planning and multi-objective path control for unmanned surface vehicle based on modified particle swarm optimization (PSO) algorithm[J]. Ocean Engineering, 2020, 216, 107693. |
34 | 赵瑞. 多目标遗传算法应用的研究[D]. 天津: 天津大学, 2005. |
ZHAO R. Analysis about the application of the multi-objective genetic algorithm[D]. Tianjin: Tianjin University, 2005. |
[1] | 李阳阳, 罗俊仁, 张万鹏, 项凤涛. 多星协同观测遗传-演进双层任务规划算法[J]. 系统工程与电子技术, 2024, 46(6): 2044-2053. |
[2] | 蔡一鸣, 马力, 陆恒杨, 方伟. 基于全流程并行遗传算法的贝叶斯网络结构学习[J]. 系统工程与电子技术, 2024, 46(5): 1703-1711. |
[3] | 尧泽昆, 王超, 施庆展, 张少卿, 袁乃昌. 基于改进离散模拟退火遗传算法的雷达网协同干扰资源分配模型[J]. 系统工程与电子技术, 2024, 46(3): 824-830. |
[4] | 尹帅, 余建慧, 宋斌, 郭延宁, 李传江, 吕跃勇. 基于多种群混沌遗传算法的GEO目标服务任务规划[J]. 系统工程与电子技术, 2024, 46(3): 914-921. |
[5] | 张玉婷, 杨镜宇. 基于能力的国防资源分配方法[J]. 系统工程与电子技术, 2024, 46(2): 599-604. |
[6] | 覃凯, 顾术实, 张智凯, 王玉, 刘倩, 赵晨, 张钦宇. 面向月表多设施通信网络的通信塔部署方案[J]. 系统工程与电子技术, 2024, 46(2): 729-739. |
[7] | 刘俊, 崔宁, 谢佳昕, 行坤. 基于NSGA-Ⅲ的机载雷达空空射频隐身探测参数设计[J]. 系统工程与电子技术, 2024, 46(1): 97-104. |
[8] | 曹志强, 张佳, 辛斌. 间歇式信息传输条件下无人机搜索覆盖规划[J]. 系统工程与电子技术, 2024, 46(1): 152-161. |
[9] | 高泽伦, 郑少秋, 梁汝鹏, 黄炎焱. 超网络体系作战下的打击目标优选模型[J]. 系统工程与电子技术, 2024, 46(1): 182-189. |
[10] | 邓勇, 姚锋, 邢立宁, 何磊. 基于混合进化算法的卫星网络星间数传方法[J]. 系统工程与电子技术, 2023, 45(9): 2931-2940. |
[11] | 王力尧, 张进, 周洪喜, 王柯茂. 基于物理规划的多星多站访问规划[J]. 系统工程与电子技术, 2023, 45(8): 2514-2520. |
[12] | 马维宁, 胡起伟, 曹文斌, 贾希胜. 考虑维修任务分配的装备选择性维修决策优化[J]. 系统工程与电子技术, 2023, 45(6): 1902-1910. |
[13] | 覃润楠, 谢文明, 惠建江, 彭晓东, 李运. 面向空间操控仿真的任务调度微服务策略[J]. 系统工程与电子技术, 2023, 45(5): 1391-1398. |
[14] | 毕可心, 吴明功, 温祥西, 张文斌, 杨文达. 基于飞行冲突网络和遗传算法的冲突解脱策略[J]. 系统工程与电子技术, 2023, 45(5): 1429-1440. |
[15] | 吕晓峰, 杨东泽, 马羚. 舰载机模块化弹药调度方案优化设计[J]. 系统工程与电子技术, 2023, 45(2): 465-471. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||