1 |
王博, 周文雅, 汪涛, 等. 多阶段任务装备体系作战能力评估[J]. 系统工程与电子技术, 2023, 45 (11): 3498- 3506.
|
|
WANG B , ZHOU W Y , WANG T , et al. Operational capability evaluation of multi-phase mission equipment system[J]. Systems Engineering and Electronics, 2023, 45 (11): 3498- 3506.
|
2 |
ZHENG X W, YU X, WEI S, et al. COVID19-OBKG: an ontology-based knowledge graph and web service for COVID19[C]//Proc. of the IEEE International Conference on Bioinformatics and Biomedicine, 2021: 2456-2462.
|
3 |
KOZAKI K, KUSHIDA T, YAMAMOTO Y, et al. Buliding knowledge graph across different subdomains using interlinking ontology for biomedical concepts[C]//Proc. of the Joint International Conference of Semantic Technology, 2019: 182-190.
|
4 |
ANTONIAZZI F , VIOLA F . Building the semantic web of things through a dynamic ontology[J]. IEEE Internet of Things Journal, 2019, 6 (6): 10560- 10579.
doi: 10.1109/JIOT.2019.2939882
|
5 |
李肖, 刘德生. 面向武器装备体系知识图谱的本体构建[J]. 兵工自动化, 2022, 41 (3): 25- 41.
|
|
LI X , LIU D S . Ontology construction for knowledge map of weapon equipment system[J]. Ordnance Indusry Automation, 2022, 41 (3): 25- 41.
|
6 |
周育伟, 杨朝宏, 王宏宇. 军事领域本体构建[J]. 计算机时代, 2022, 21 (9): 96- 99.
|
|
ZHOU Y W , YANG C H , WANG H Y . Ontology construction of military field[J]. Computer Era, 2022, 21 (9): 96- 99.
|
7 |
CHEN Z K, ZHAO Y. The technology of military knowledge graph construction based on multiple open data source[C]//Proc. of the 5th International Conference on Mechanical, Control and Computer Engineering, 2020: 1993-1997.
|
8 |
Department of Defense Architecture Framework Working Group. The Department of Defense Architecture Framework (DoDAF) Version 2.0[R]. Washington D.C. : Department of Defense, 2009.
|
9 |
United Kingdom Ministry of Defense. UK Ministry of Defense Framework (MoDAF) Version 1.2[R]. London: United Kingdom Ministry of Defense, 2008.
|
10 |
North Atlantic Treaty Organization Consultation Command and Control (C3) Board. The North Altlantic Treaty Organization (NATO) Architecture Framework Version 3.0[R]. Brussels: North Altlantic Treaty Organization, 2007.
|
11 |
TOGAF 9.2. The open group architecture framework[S]. UK: The Open Group, 2018.
|
12 |
Object Management Group. Unified architecture framework profile (UAFP) Version1.0[EB/OL]. [2023-05-01]. http://www.omg.org/spec/UAF/20170515/UAFP-Profile.xmi.
|
13 |
KVSTER J M . Definition and validation of model transformation[J]. Software and System Modeling, 2006, 5 (3): 233- 259.
doi: 10.1007/s10270-006-0018-8
|
14 |
Department of Defense Architecture Framework Working Group. DoD Architecture Framework Version2.02. Changel Volume3: Department of Defense Architecture Framework (DoDAF) meta-model ontology foundation and physical exchange specification[R]. Washington D.C. : Department of Defense, 2015.
|
15 |
谢文才, 罗雪山, 罗爱民. 基于元模型的军事信息系统体系结构建模方法[J]. 国防科技大学学报, 2012, 34 (1): 82- 87.
|
|
XIE W C , LUO X S , LUO A M . Meta-model based modeling of military information system architecture[J]. Journal of National University of Defense Technology, 2012, 34 (1): 82- 87.
|
16 |
谭贤四, 朱刚, 王红, 等. 基于IDEAS的联合论证元模型[J]. 系统工程与电子技术, 2015, 37 (1): 85- 92.
doi: 10.3969/j.issn.1001-506X.2015.01.15
|
|
TAN X S , ZHU G , WANG H , et al. Joint demonstration meta-model based on IDEAS[J]. Systems Engineering and Electronics, 2015, 37 (1): 85- 92.
doi: 10.3969/j.issn.1001-506X.2015.01.15
|
17 |
LV H N, XIE J, LIU K. Research on the architecture of shipborne UAV target indication command and control system based on DoDAF[C]//Proc. of the 2nd International Conference on Computer Engineering and Intelligent Control, 2021: 162-171.
|
18 |
高悦, 茹乐, 迟文升, 等. 基于体系结构设计的空战系统任务元模型建模[J]. 系统工程与电子技术, 2021, 43 (11): 3229- 3238.
doi: 10.12305/j.issn.1001-506X.2021.11.23
|
|
GAO Y , RU L , CHI W S , et al. Task meta-model modeling of air combat system based on system architecture design[J]. Systems Engineering and Electronics, 2021, 43 (11): 3229- 3238.
doi: 10.12305/j.issn.1001-506X.2021.11.23
|
19 |
SINGHAL A . Introducing the knowledge graph: things, not strings[J]. Official Google Blog, 2016, 6 (9): 15- 22.
|
20 |
REN H , CHEN Z W , LIANG X J , et al. Association hierarchical representation learning for plant-wide process monitoring by using multilevel knowledge graph[J]. IEEE Trans.on Artificial Intelligence, 2023, 4 (4): 636- 649.
|
21 |
LU X Y , WANG L F , JIANG Z J , et al. MRE: a translational knowledge graph completion model based on multiple relation embedding[J]. Mathematical Biosciences and Engineering: MBE, 2023, 20 (3): 5481- 5900.
|
22 |
QI Y L , MAI G C , ZHU R , et al. EVKG: an interlinked and interoperable electric vehicle knowledge for smart transportation system[J]. Transactions in GIS, 2023, 27, 949- 974.
|
23 |
ZHOU B , SHEN X W , LI X Y , et al. Semantic-aware event link reasoning over industrial knowledge graph embedding time series data[J]. International Journal of Production Research, 2022, 61 (12): 4117- 4134.
|
24 |
DEBELLIS M , DUTTA B . From ontology to knowledge graph with agile methods: the case of COVID-19 CODO knowledge graph[J]. International Journal of Web Information Systems, 2022, 18 (5/6): 432- 452.
|
25 |
TAMAŠAUSKAITÉ G , GROTH P . Defining a knowledge graph development process through a systematic review[J]. ACM Transactions on Software Engineering and Methodology, 2022, 32 (1): 27.
|
26 |
HAO X J , JI Z , LI X H , et al. Construction and application of a Knowledge Graph[J]. Remote Sense, 2021, 13 (13): 2511.
|
27 |
DURÁN C K , MEDINA-RAMÍREZ R C , NIETO M A , et al. Process of building an educational and a military ontology for the Mexican context[J]. Research in Computing Science, 2019, 148 (5): 43- 50.
|
28 |
International Defense Enterprise Architecture Specification Group. International defense enterprise architecture specification[EB/OL]. [2023-05-10]. http://www.ideas-group.prg, 2011.
|
29 |
GHOSH S , SUNIL K C . A knowledge organization framework for influencing tourism-centered place-making[J]. Journal of Documentation, 2021, 78 (2): 157- 176.
|
30 |
SAAD M , ZHANG Y Z , TIAN J H , et al. A graph database for life cycle inventory using Neo4j[J]. Journal of Cleaner Production, 2023, 393, c136344.
|
31 |
YANG D S , LI Q , ZHU F H , et al. Parallel emergency management of incidents by integration OODA and PREA loops: the C2 mechanism and modes[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2023, 53 (4): 2160- 2172.
|