系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (7): 2359-2373.doi: 10.12305/j.issn.1001-506X.2024.07.18
• 系统工程 • 上一篇
陆宁云1,2, 李洋3, 姜斌1,2,*, 黄守金1, 马坤4
收稿日期:
2023-06-01
出版日期:
2024-06-28
发布日期:
2024-07-02
通讯作者:
姜斌
作者简介:
陆宁云 (1978—), 女, 教授, 博士, 主要研究方向为数据驱动的故障诊断、故障预测与健康管理基金资助:
Ningyun LU1,2, Yang LI3, Bin JIANG1,2,*, Shoujin HUANG1, Kun MA4
Received:
2023-06-01
Online:
2024-06-28
Published:
2024-07-02
Contact:
Bin JIANG
摘要:
测试性设计是提高系统可靠性、安全性、维修性、保障性的重要前沿技术, 决定了系统故障检测率和隔离率, 直接影响系统的维护(测试)成本。系统测试性设计包含结构化设计、模型化设计、数据驱动设计等多种设计策略。其中, 数据驱动设计于近年逐渐兴起并成为重要发展方向之一, 该类方法通过对系统测试与故障之间的关系进行建模, 依据测试结果进行故障推理, 形成故障诊断方案。首先, 简要回顾了系统测试性设计的发展历程; 其次, 重点介绍了测试性设计的研究进展, 分析总结了结构化、模型化、数据驱动3类测试方案; 然后, 介绍了测试性诊断策略构建, 根据测试方案中的建模方法确定诊断策略的构建技术, 并总结归纳了每类技术的研究特点和适用性; 最后, 探讨了当前复杂系统测试性设计面临的挑战性问题和可能的未来研究方向。
中图分类号:
陆宁云, 李洋, 姜斌, 黄守金, 马坤. 复杂系统测试性设计与故障诊断策略研究进展[J]. 系统工程与电子技术, 2024, 46(7): 2359-2373.
Ningyun LU, Yang LI, Bin JIANG, Shoujin HUANG, Kun MA. Overview of design of testability and dot based fault diagnosis strategy for complex systems[J]. Systems Engineering and Electronics, 2024, 46(7): 2359-2373.
1 | 王自力. 直升机可靠性、维修性指标研究[J]. 航空学报, 1995, 16 (S1): 20- 27. |
WANG Z L . Investigation of reliability and maintainability parameters for helicopters[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16 (S1): 20- 27. | |
2 | 姜斌, 吴云凯, 陆宁云, 等. 高速列车牵引系统故障诊断与预测技术综述[J]. 控制与决策, 2018, 33 (5): 841- 855. |
JIANG B , WU Y K , LU N Y , et al. Review of fault diagnosis and prognosis techniques for high-speed railway traction system[J]. Control and Decision, 2018, 33 (5): 841- 855. | |
3 | 雷华军. 电子系统测试方案优化设计理论与关键技术研究[D]. 成都: 电子科技大学, 2015. |
LEI H J. Research on optimization design theory of test scheme and key technologies for electronic system[D]. Chengdu: University of Electronic Science and Technology of China, 2015. | |
4 | 田仲, 石君友. 系统测试性设计分析与验证[M]. 北京: 北京航空航天大学出版社, 2003. |
TIAN Z , SHI J Y . System testability design and analysis and verification[M]. Beijing: Beihang University Press, 2003. | |
5 | WILLIAMS T W , PARKER K P . Design for testability-a survey[J]. IEEE Trans.on Computers, 1982, 31 (1): 2- 15. |
6 | 温熙森, 徐永成, 易晓山, 等. 智能机内测试理论与应用[M]. 北京: 国防工业出版社, 2002. |
WEN X S , XU Y C , YI X S , et al. Theory and application of intelligent built in test[M]. Beijing: National Defense Industry Press, 2002. | |
7 | 应文健, 程雨森, 王旋, 等. 基于研制阶段数据融合的舰炮制导弹药测试性评估方法[EB/OL]. 系统工程与电子技术. [2022-10-19]. http://kns.cnki.net/kcms/detail/11.2422.TN.20220810.1350.002.html. |
YING W J, CHENG Y S, WANG X, et al. Testability evaluation method of naval gun guided ammunition based on data fusion in development stage[EB/OL]. Systems Engineering and Electronics. [2022-10-19]. http://kns.cnki.net/kcms/detail/11.2422.TN.20220810.1350.002.html. | |
8 |
邱文昊, 连光耀, 闫鹏程, 等. 考虑贡献率和可信度的测试性试验优化方法[J]. 哈尔滨工业大学学报, 2022, 54 (12): 95- 102.
doi: 10.11918/201905219 |
QIU W H , LIAN G Y , YAN P C , et al. Testability demonstration test optimization method considering contribution rate and credibility[J]. Journal of Harbin Institute of Technology, 2022, 54 (12): 95- 102.
doi: 10.11918/201905219 |
|
9 | 葛名立. 机载设备测试性建模与应用[J]. 计算机测量与控制, 2022, 30 (12): 36- 41. |
GE M L . Modeling and application of airborne equipments testability[J]. Computer Measurement & Control, 2022, 30 (12): 36- 41. | |
10 | 贾占强, 梁保卫, 王江辉, 等. 基于多信号流图模型的典型无人机测控系统测试性优化设计方法研究[J]. 测控技术, 2022, 41 (6): 26- 32. |
JIA Z Q , LIANG B W , WANG J H , et al. Optimisation method of testability design for typical UAV TT&C based on multiple signal flow graph model[J]. Measurement & Control Technology, 2022, 41 (6): 26- 32. | |
11 |
张莎, 章学良. 雷达装备使用阶段测试性指标评估与验证[J]. 电子质量, 2022, 4, 160- 165.
doi: 10.3969/j.issn.1003-0107.2022.04.043 |
ZHANG S , ZHANG X L . Evaluation and verification of testability index of radar equipment in service stage[J]. Electronics Quality, 2022, 4, 160- 165.
doi: 10.3969/j.issn.1003-0107.2022.04.043 |
|
12 | 娄康, 王溢, 付黄龙. 基于TEAMS的调距桨电液系统故障诊断测试性建模与分析[J]. 机电设备, 2022, 39 (3): 35- 39. |
LOU K , WANG Y , FU H L . Modeling and analysis of fault diagnosis testability of controllable pitch propeller electro-hydraulic system based on TEAMS[J]. Mechanical and Electrical Equipment, 2022, 39 (3): 35- 39. | |
13 | 汪庆雷, 黄宏伟, 高强. 基于层次分析法的导弹发射车测试性指标分配方法研究[J]. 质量与可靠性, 2022, 1, 54- 58. |
WANG Q L , HUANG H W , GAO Q . Research on the allocation method of testability index of missile launch vehicles based on AHP[J]. Quality and Reliability, 2022, 1, 54- 58. | |
14 | 王康, 史贤俊, 聂新华, 等. 基于测试性增长的指标动态评估方法[J]. 振动、测试与诊断, 2021, 41 (6): 1206-1215, 1243. |
WANG K , SHI X J , NIE X H , et al. A dynamic evaluation method of indicators based on test growth[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41 (6): 1206-1215, 1243. | |
15 |
王华茂. 航天器综合测试技术发展与展望[J]. 航天器工程, 2021, 30 (5): 125- 132.
doi: 10.3969/j.issn.1673-8748.2021.05.018 |
WANG H M . Spacecraft comprehensive testing technology development and prospects[J]. Spacecraft Engineering, 2021, 30 (5): 125- 132.
doi: 10.3969/j.issn.1673-8748.2021.05.018 |
|
16 | 杨鹏. 基于相关性模型的诊断策略优化设计技术[D]. 长沙: 国防科学技术大学, 2009. |
YANG P. Optimization technology of design for diagnostic strategy based on dependency model[D]. Changsha: National University of Defense Technology, 2009. | |
17 | GREENSPAN M A. Establishing testability standards[C]//Proc. of the IEEE AUTOTESTCON, 1978: 275-281. |
18 | WILLIAM L K. Service initiative in testability[C]//Proc. of the IEEE Reliability and Maintainability Symposium, 1984: 158-161. |
19 | KELLER T A. Mate as viewed by westinghouse[C]//Proc. of the IEEE AUTOTESTCON, 1978: 121-123. |
20 | 邱静, 刘冠军, 杨鹏, 等. 装备测试性建模与设计技术[M]. 北京: 科学出版社, 2013: 1- 8. |
QIU J , LIU G J , YANG P , et al. Equipment testability mo-deling and design technology[M]. Beijing: Science Press, 2013: 1- 8. | |
21 |
刘冠军, 温熙森, 易晓山. 基于边界扫描的电路板测试性优化设计[J]. 计算机工程与科学, 2002, 2, 73- 76.
doi: 10.3969/j.issn.1007-130X.2002.02.018 |
LIU G J , WEN X S , YI X S . Optimal design for the testability of circuit boards based on boundary scan[J]. Computer Engineering & Science, 2002, 2, 73- 76.
doi: 10.3969/j.issn.1007-130X.2002.02.018 |
|
22 | MIL-STD-2165A—1993. Military standard testability program for systems and equipments[S]. Fort Belvoir: Defense System Management College, 1993. |
23 | ERIC G. Modeling it both ways: hybrid diagnostic modeling and its application to hierarchical system designs[C]//Proc. of the IEEE AUTOTESTCON, 2004: 576-582. |
24 | DEB S, PATTIPATI K R, RAGHAVAN V, et al. Multi-signal flow graphs: a novel approach for system testability analysis and fault diagnosis[C]//Proc. of the AUTOTESTCON, 1995: 361-373. |
25 |
叶文, 吕鑫燚, 吕晓峰, 等. 考虑关键故障的测试优化选择[J]. 系统工程与电子技术, 2019, 41 (7): 1583- 1589.
doi: 10.3969/j.issn.1001-506X.2019.07.20 |
YE W , LYU X Y , LYU X F , et al. Optimized test selection method considering critical faults[J]. Systems Engineering and Electronics, 2019, 41 (7): 1583- 1589.
doi: 10.3969/j.issn.1001-506X.2019.07.20 |
|
26 |
ZAKERI-NASRABADI M , PARSA S . An ensemble meta-estimator to predict source code testability[J]. Applied Soft Computing, 2022, 129, 109562.
doi: 10.1016/j.asoc.2022.109562 |
27 | CANNAS B , FANNI A , MANETTI S , et al. Neural network-based analog fault diagnosis using testability analysis[J]. Neural Computing & Applications, 2004, 13 (4): 288- 298. |
28 | SEN S, NATH S S, MALEPATI V N, et al. Simulation-based testability analysis and fault diagnosis[C]//Proc. of the IEEE AUTOTESTCON, 1996: 136-148. |
29 |
KHOOL P , TOR S B , LI J R . A rough set approach to the ordering of basic events in a fault tree for fault diagnosis[J]. The International Journal of Advanced Manufacturing Technology, 2001, 17 (10): 769- 774.
doi: 10.1007/s001700170123 |
30 | WANG S, JI Y D, YANG S Y. A stochastic combinatorial optimization model for test sequence optimization[C]//Proc. of the International Colloquium on Computing, Communication, Control, and Management, 2009: 311-315. |
31 | 张士刚. 非完美测试条件下的测试性设计理论与方法研究[D]. 长沙: 国防科技大学, 2013. |
ZHANG S G. Research on the theory and method of testability design with imperfect tests[D]. Changsha: National University of Defense Technology, 2013. | |
32 |
谢皓宇, 邱静, 杨鹏. 考虑单元互测的测试性指标分配方法[J]. 系统工程与电子技术, 2019, 41 (12): 2899- 2904.
doi: 10.3969/j.issn.1001-506X.2019.12.32 |
XIE H Y , QIU J , YANG P . Testability index allocation met-hod considering unit mutual test[J]. Systems Engineering and Electronics, 2019, 41 (12): 2899- 2904.
doi: 10.3969/j.issn.1001-506X.2019.12.32 |
|
33 | STROUD C E . A designer's guide to built-in self-test[M]. New York: Springer Science & Business Media, 2006. |
34 | FRISCH A, ALMY T. HABIST: histogram-based analog built in self test[C]//Proc. of the International Test Conference, 1997: 760-767. |
35 | WANG L T , WU C W , WEN X Q . VLSI test principles and architectures[M]. Burlington: Morgan Kaufmann, 2006: 263- 340. |
36 | 杨彦卿, 郭晨. 一种LED灯串故障自检测电路的设计与实现[J]. 液晶与显示, 2019, 34 (4): 402- 409. |
YANG Y Q , GUO C . Design and implementation of a fault self-detection circuit for LED string[J]. Chinese Journal of Li-quid Crystals and Displays, 2019, 34 (4): 402- 409. | |
37 | MASNITA M I, ZUHA W H W, SIDEK R M, et al. The data and read/write controller for March-based SRAM diagnostic algorithm MBIST[C]//Proc. of the IEEE Student Conference on Research and Development, 2009: 296-299. |
38 | SUBIR K R. Integration verification in system on chips using formal techniques[EB/OL]. [2023-06-01]. https://www.intechopen.com/chapters/6642. |
39 | WEHAGE E. Built-in self test parallel JTAG serial chain architecture for reduced test vector size[P]. U.S. : No. 2003/0172333/A1, 2003. |
40 | DAS D, TOUBA N A. Reducing test data volume using external/LBIST hybrid test patterns[C]//Proc. of the International Test Conference, 2000: 3-5. |
41 | BLOCK S G, RUEVENI D R. Logic built-in self test (BIST)[P]. U.S. : No. 6, 904, 554 B2, 2005. |
42 | LI N, CARLSSON G, DUBROVA E, et al. Logic BIST: State-of-the-art and open problems[EB/OL]. [2023-06-01]. https://doi.org/10.48550/arXiv.1503.04628. |
43 |
BENSO A , CHIUSANO S , DI NATALE G , et al. An on-line BIST RAM architecture with self-repair capabilities[J]. IEEE Trans.on Reliability, 2002, 51 (1): 123- 128.
doi: 10.1109/24.994929 |
44 | ZORIAN Y , SHOUKOURIAN S . Embedded memory test and repair: infrastructure IP for SoC yield[J]. IEEE Design and Test of Computers, 2003, 3 (20): 340- 349. |
45 | CHARLOT B, MIR S, PARRAIN F, et al. Electrically induced stimuli for MEMS self-test[C]//Proc. of the 19th IEEE VLSI Test Symposium, 2001: 210-215. |
46 |
CHARLOT B , MIR S , PARRAIN F , et al. Generation of electrically induced stimuli for MEMS self-test[J]. Journal of Electronic Testing, 2001, 17 (6): 459- 470.
doi: 10.1023/A:1012860420235 |
47 |
王国书, 刘桂峰, 吴杰长, 等. 气垫船纵横倾信号处理电路测试性设计及BIT实现[J]. 兵器装备工程学报, 2021, 42 (7): 228- 233.
doi: 10.11809/bqzbgcxb2021.07.039 |
WANG G S , LIU G F , WU J C , et al. Testability design and BIT realization of the vertical and horizontal tilting signal processing circuit of hovercraft[J]. Journal of Ordnance Equipment Engineering, 2021, 42 (7): 228- 233.
doi: 10.11809/bqzbgcxb2021.07.039 |
|
48 | SHI J Y, LI J Z, SHI M. Method of automated BIT false alarms simulation based on EDA[C]//Proc. of the 6th IEEE Conference on Industrial Electronics and Applications, 2011: 1449-1453. |
49 |
DERMENTZOGLOU L E , ARAPOYANNI A , TSIATOUHAS Y . A built-in-test circuit for RF differential low noise amplifiers[J]. IEEE Trans.on Circuits and Systems Ⅰ: Regular Papers, 2010, 57 (7): 1549- 1558.
doi: 10.1109/TCSI.2009.2035417 |
50 |
ROBERTS G W , ALI-BAKHSHIAN M . A brief introduction to time-to-digital and digital-to-time converters[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2010, 57 (3): 153- 157.
doi: 10.1109/TCSII.2010.2043382 |
51 | SUPON T M, THANGARAJAH K, RASHIDZADEH R, et al. A PLL based readout and built-in self-test for MEMS sensors[C]//Proc. of the IEEE 54th International Midwest Symposium on Circuits and Systems, 2011: 1-4. |
52 | 袁剑平, 孙寒冰. 电液伺服阀放大器的机内测试技术[J]. 中国舰船研究, 2021, 16 (3): 207- 214. |
YUAN J P , SUN H B . Built-in test technology for electro-hydraulic servo-valve amplifier[J]. Chinese Journal of Ship Research, 2021, 16 (3): 207- 214. | |
53 |
JIA C , MILOR L . A DLL design for testing I/O setup and hold times[J]. IEEE Trans.on Very Large Scale Integration Systems, 2009, 17 (11): 1579- 1592.
doi: 10.1109/TVLSI.2008.2005522 |
54 | SALVIA J, CAGDASER B, KHENKIN A S. Electrical testing and feedthrough cancellation for an acoustic sensor[P]. U.S. Patent 9, 661, 433, 2017-5-23. |
55 | PAN C Y, CHENG K T. Pseudo-random testing and signature analysis for mixed-signal circuits[C]//Proc. of the IEEE International Conference on Computer Aided Design, 1995: 102-107. |
56 |
JEFFREY C , DUMAS N , XU Z , et al. Sensor testing through bias superposition[J]. Sensors and Actuators A: Physical, 2007, 136 (1): 441- 455.
doi: 10.1016/j.sna.2006.11.030 |
57 |
BEROULLE V , BERTRAND Y , LATORRE L , et al. Test and testability of a monolithic MEMS for magnetic field sensing[J]. Journal of Electronic Testing, 2001, 17 (5): 439- 450.
doi: 10.1023/A:1012759320563 |
58 |
DUMAS N , XU Z , GEORGOPOULOS K , et al. Online testing of MEMS based on encoded stimulus superposition[J]. Journal of Electronic Testing, 2008, 24 (6): 555- 566.
doi: 10.1007/s10836-008-5090-2 |
59 | JEFFREY C , XU Z , RICHARDSON A . Using bias superposition to test a thick film conductance sensor[J]. Journal of Physics: Conference Series, 2005, 15 (1): 161. |
60 |
PECHT M , DUBE M , NATISHAN M , et al. Evaluation of built-in test[J]. IEEE Trans.on Aerospace and Electronic Systems, 2001, 37 (1): 266- 271.
doi: 10.1109/7.913684 |
61 |
GREENE K , CHAUHAN V , FLOYD B . Built-in test of phased arrays using code-modulated interferometry[J]. IEEE Trans.on Microwave Theory and Techniques, 2018, 66 (5): 2463- 2479.
doi: 10.1109/TMTT.2017.2784373 |
62 | XU Z, KOLTSOV D, RICHARDSON A, et al. Design and simulation of a multi-function MEMS sensor for health and usage monitoring[C]//Proc. of the Prognostics and System Health Management Conference, 2010. |
63 | KAMPMANN M , KOCHTE M A , LIU C , et al. Built-in test for hidden delay faults[J]. IEEE Trans.on Computer-Aided Design of Integrated Circuits and Systems, 2018, 38 (10): 1956- 1968. |
64 | SHEPPARD J W , SIMPSON W R . A mathematical model for integrated diagnostics[J]. IEEE Design & Test of Computers, 1991, 8 (4): 25- 38. |
65 | SHAKERI M . Advances in system fault modeling and diagnosis[M]. Storrs, USA: University of Connecticut, 1996. |
66 | GOULD E. Modeling it both ways: hybrid diagnostic modeling and its application to hierarchical system designs[C]//Proc. of the AUTOTESTCON, 2004: 576-582. |
67 | SIMPSON W R , SHEPPARD J W . System complexity and integrated diagnostics[J]. IEEE Design & Test of Computers, 1991, 8 (3): 16- 30. |
68 | LU N Y , JIANG B , MENG X F , et al. Diagnosis, diagnosticability analysis, and test point design for multiple faults based on multisignal modeling and blind source separation[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2017, 50 (1): 137- 148. |
69 | OU L Q, BAI F. The integrative technology of testability design and fault diagnosis for complex electronic information system[C]//Proc. of the Artificial Intelligence in China, 2020: 391-397. |
70 | LI Y , LU N Y , SHI J T , et al. A quantitative causal diagram based optimal sensor allocation strategy considering the propagation of fault risk[J]. Journal of the Franklin Institute, 2021, 358 (1): 1021- 1043. |
71 | HAN L, SHI X J, ZHAI Y Y, et al. Testability modeling method based on MSFG-BN composite model[C]//Proc. of the 5th International Conference on Automation, Control and Robotics Engineering, 2020: 212-215. |
72 | CAO Z Y, DONG H Y, GU Q F, et al. Importance measure analysis method for maintenance based on mutil-function testability states[C]//Proc. of the IOP Conference Series: Materials Science and Engineering, 2020: 012042. |
73 | ZHAI Y, SHI X, HAN L, et al. A testability model method based on three-state fault colored generalized stochastic petri nets[C]//Proc. of the Advances in Guidance, Navigation and Control, 2022: 183-193. |
74 | RAJPATHAK D G , SINGH S . An ontology-based text mining method to develop D-matrix from unstructured text[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2013, 44 (7): 966- 977. |
75 | DU X S , HU B , QIN J . Testabilityanalysis method of radar equipment based on dependency model[J]. Journal of Physics: Conference Series, 2021, 2093 (1): 012031. |
76 | YANG C L . Parallel-series multiobjective genetic algorithm for optimal tests selection with multiple constraints[J]. IEEE Trans.on Instrumentation and Measurement, 2018, 67 (8): 1859- 1876. |
77 | LUO H , WANG Y R , LIN H , et al. A new optimal test node selection method for analog circuit[J]. Journal of Electronic Testing, 2012, 28 (3): 279- 290. |
78 | SAEEDI S , PISHGAR S H , ESLAMI M . Optimum test point selection method for analog fault dictionary techniques[J]. Ana-log Integrated Circuits and Signal Processing, 2019, 100 (1): 167- 179. |
79 | LIU Y . Optimal selection of tests for fault detection and isolation in multi-operating mode system[J]. Journal of Systems Engineering and Electronics, 2019, 30 (2): 425- 434. |
80 | MA Q F , HE Y Z , ZHOU F Q , et al. Test point selection method for analog circuit fault diagnosis based on similarity coefficient[J]. Mathematical Problems in Engineering, 2018, 2018, 9714206. |
81 | YANG C L , CHEN F , TIAN S L . Grouped genetic algorithm based optimal tests selection for system with multiple operation modes[J]. Journal of Electronic Testing, 2017, 33 (4): 415- 429. |
82 | ZHAO C X , PATTIPATI K R . A Markov chain-based tes-tability growth model with a cost-benefit function[J]. IEEE Trans.on Systems, Man, and Cybernetics: Systems, 2015, 46 (4): 524- 534. |
83 | ZHAO C X , QIU J , LIU G J , et al. Planning, tracking and projecting method for testability growth based on in time correction[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2016, 230 (2): 228- 236. |
84 | ZHAO Z A , ZHANG Y , LIU G J , et al. Statistical analysis of time-varying characteristics of testability index based on NHPP[J]. IEEE Access, 2017, 5, 4759- 4768. |
85 | YE X R , CHEN C , KANG M S , et al. A joint distribution-based testability metric estimation model for unreliable tests[J]. IEEE Access, 2018, 6, 42566- 42577. |
86 | 应文健, 程雨森, 王旋, 等. 基于研制阶段数据融合的舰炮制导弹药测试性评估方法[EB/OL]. 系统工程与电子技术. [2023-05-01]. http://kns.cnki.net/kcms/detail/11.2422.TN.20220810.1350.002.html. |
YING W J, CHENG Y S, WANG X, et al. Testability evaluation method of naval gun guided ammunition based on data fusion in development stage[EB/OL]. Systems Engineering and Electronics. [2023-05-01]. http://kns.cnki.net/kcms/detail/11.2422.TN.20220810.1350.002.html. | |
87 | LI Y , WANG X L , LU N Y , et al. Conditional Joint distribution-based test selection for fault detection and isolation[J]. IEEE Trans.on Cybernetics, 2021, 52 (12): 13168- 13180. |
88 | LI Y , ZIO E , LU N Y , et al. Joint distribution-based test selection for fault detection and isolation under multiple faults condition[J]. IEEE Trans.on Instrumentation and Measurement, 2020, 70, 1- 13. |
89 | LUO H , WANG Y R , LIN H , et al. A new optimal test node selection method for analog circuit[J]. Journal of Electronic Testing, 2012, 28 (3): 279- 290. |
90 | AO Y C , SHI Y B , ZHANG W , et al. An approximate calculation of ratio of normal variables and its application in analog circuit fault diagnosis[J]. Journal of Electronic Testing, 2013, 29 (4): 555- 565. |
91 | TAN H , PENG M F . Minimization of ambiguity in parametric fault diagnosis of analog circuits: a complex network approach[J]. Applied Mathematics and Computation, 2012, 219 (1): 408- 415. |
92 | CUI J , WANG Y R . A novel approach of analog circuit fault diagnosis using support vector machines classifier[J]. Measurement, 2011, 44 (1): 281- 289. |
93 | VASAN A S S , LONG B , PECHT M . Diagnostics and prognostics method for analog electronic circuits[J]. IEEE Trans.on Industrial Electronics, 2012, 60 (11): 5277- 5291. |
94 | DENG Y , SHI Y B , ZHANG W . An approach to locate parametric faults in nonlinear analog circuits[J]. IEEE Trans.on Instrumentation and Measurement, 2011, 61 (2): 358- 367. |
95 | KUMAR A , SINGH A P . Fuzzy classifier for fault diagnosis in analog electronic circuits[J]. ISA Transactions, 2013, 52 (6): 816- 824. |
96 | LITOVSKI V , ANDREJEVI M , ZWOLINSKI M . Analogue electronic circuit diagnosis based on ANNs[J]. Microelectronics Reliability, 2006, 46 (8): 1382- 1391. |
97 | YUAN L F , HE Y G , HUANG J Y , et al. A new neural-network-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor[J]. IEEE Trans.on Instrumentation and Measurement, 2009, 59 (3): 586- 595. |
98 | HUANG K , STRATIGOPOULOS H G , MIR S , et al. Diagnosis of local spot defects in analog circuits[J]. IEEE Trans.on Instrumentation and Measurement, 2012, 61 (10): 2701- 2712. |
99 | LUO H , WANG Y R , CUI J . A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor[J]. Expert Systems with Applications, 2011, 38 (8): 10554- 10561. |
100 | XIONG J , TIAN S L , YANG C L . Fault diagnosis for analog circuits by using EEMD, relative entropy, and ELM[J]. Computational Intelligence and Neuroscience, 2016, 2016, 7657054. |
101 | YU W X , SUI Y , WANG J . The faults diagnostic analysis for analog circuit based on FA-TM-ELM[J]. Journal of Electronic Testing, 2016, 32 (4): 459- 465. |
102 | SUN Y, MILLICAN S. Test point insertion using artificial neural networks[C]//Proc. of the IEEE Computer Society Annual Symposium on VLSI, 2019: 253-258. |
103 | AIZENBERG I , BELARDI R , BINDI M , et al. A neural network classifier with multi-valued neurons for analog circuit fault diagnosis[J]. Electronics, 2021, 10 (3): 349. |
104 | CHEN L Y, ZHAI G F, YE X R, et al. Testability design based on relevance of circuit nodes and fault diagnosis[C]//Proc. of the Prognostics and System Health Management Conference, 2017. |
105 | WANG J Y , LIU Z , WANG J H , et al. Ageneral enhancement method for test strategy generation for the sequential fault diagnosis of complex systems[J]. Reliability Engineering & System Safety, 2022, 228, 108754. |
106 | ZHOU J L , TIAN S L , YANG C L , et al. Test generation algorithm for fault detection of analog circuits based on extreme learning machine[J]. Computational Intelligence and Neuroscience, 2014, 2014, 740838. |
107 | MEI W J , LIU Z , TANG L , et al. Teststrategy optimization based on soft sensing and ensemble belief measurement[J]. Sensors, 2022, 22 (6): 2138. |
108 | TANG X F , XU A Q , NIU S C . KKCV-GA-based method for optimal analog test point selection[J]. IEEE Trans.on Instrumentation and Measurement, 2016, 66 (1): 24- 32. |
109 | TANG X F , XU A Q , LI R F , et al. Simulation-based diagnostic model for automatic testability analysis of analog circuits[J]. IEEE Trans.on Computer-Aided Design of Integra-ted Circuits and Systems, 2017, 37 (7): 1483- 1493. |
110 | LI Y , CHEN H T , LU N Y , et al. Data-driven optimal test selection design for fault detection and isolation based on CCVKL method and PSO[J]. IEEE Trans.on Instrumentation and Measurement, 2022, 71, 1- 10. |
111 | HUANG C Z , WANG Y S , HOU G L , et al. An LSTM-BINN approach for built-in test analog signal state recognition of heavy-duty gas turbine controllers[J]. IEEE Trans.on Instrumentation and Measurement, 2021, 70, 1- 11. |
112 | HUANG C Z , SHEN Z D , ZHANG J H , et al. BIT-based intermittent fault diagnosis of analog circuits by improved deep forest classifier[J]. IEEE Trans.on Instrumentation and Measurement, 2022, 71, 1- 13. |
113 | 谢皓宇. 系统级测试性设计关键问题研究[M]. 长沙: 国防科技大学, 2019. |
XIE H Y . Study on key issues of system level testability design[M]. Changsha: National University of Defense Technology, 2019. | |
114 | 陆宁云, 孟宪锋, 姜斌, 等. 基于多信号模型和盲源分离的复合故障诊断方法[J]. 控制与决策, 2016, 31 (11): 1945- 1952. |
LU N Y , MENG X F , JIANG B , et al. Compound fault diagnosis method based on multi-signal model and blind source separation[J]. Control and Decision, 2016, 31 (11): 1945- 1952. | |
115 | ZHANG G F. Optimum sensor localization in a diagnostic/prognostic architecture[D]. Atlanta: Georgia Institute of Technology, 2005. |
116 | LI Y , LU N Y , WANG X L , et al. Islanding fault detection based on data-driven approach with active developed reactive power variation[J]. Neurocomputing, 2019, 337, 97- 109. |
117 | FONTANA G, GRASSO F, LUCHETTA A, et al. Testability analysis based on complex-field fault modeling[C]//Proc. of the 15th International Conference on Synthesis, Mo-deling, Analysis and Simulation Methods and Applications to Circuit Design, 2018: 33-36. |
118 | YU J S , SHI Y Y , TANG D Y , et al. Optimizing sequential diagnostic strategy for large-scale engineering systems using a quantum-inspired genetic algorithm: a comparative study[J]. Applied Soft Computing, 2019, 85, 105802. |
119 | HE W , HE Y G , LI B . Generative adversarial networks with comprehensive wavelet feature for fault diagnosis of analog circuits[J]. IEEE Trans.on Instrumentation and Measurement, 2020, 69 (9): 6640- 6650. |
120 | ZHOU D X, ZHANG W L, XIE X M, et al. Research on the application of extension rule on fault diagnosis expert system inference engine[C]//Proc. of the 2nd International Confe-rence on Mechanic Automation and Control Engineering, 2011: 1569-1572. |
121 | WANG C W , LI P , BOREN C , et al. Design of pump fault diagnosis system based on T-FMEA[J]. Journal of Physics: Conference Series, 2018, 1060 (1): 012093. |
122 | TADEUSIEWICZ M , HAŁGAS S . A method for multiple soft fault diagnosis of linear analog circuits[J]. Measurement, 2019, 131, 714- 722. |
123 | SHI J Y , DENG Y , WANG Z L . Novel testability modelling and diagnosis method considering the supporting relation between faults and tests[J]. Microelectronics Reliability, 2022, 129, 114463. |
124 | ERDINC O , BRIDEAU C , WILLETT P , et al. Fast diagnosis with sensors of uncertain quality[J]. IEEE Trans.on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008, 38 (4): 1157- 1165. |
125 | 张森, 于登云, 王九龙. 大虚警率下的多故障诊断算法[J]. 中国空间科学技术, 2012, 2, 55- 61. |
ZHANG S , YU D Y , WANG J L . Multiple fault diagnosis algorithm under large false alarm rate tests[J]. Chinese Space Science and Technology, 2012, 2, 55- 61. | |
126 | LV X , ZHOU D , MA L , et al. Dependency model-based multiple fault diagnosis using knowledge of test result and fault prior probability[J]. Applied Sciences, 2019, 9 (2): 311. |
127 | 秦玉峰, 史贤俊. 基于多信号流图和相似性度量的故障可诊断性评价方法[J]. 系统工程与电子技术, 2023, 45 (1): 302- 312. |
QIN Y F , SHI X J . Fault diagnosability evaluation method based on multi-signal flow graph and similarity measure[J]. Systems Engineering and Electronics, 2023, 45 (1): 302- 312. | |
128 | LU B, MEI W J, ZHOU J M, et al. Annovel testing sequence optimization method under dynamic environments[C]//Proc. of the 10th International Conference on Communications, Circuits and Systems, 2018: 479-483. |
129 | YANG H H , MENG C , WANG C . A probability first memetic algorithm for the dynamic multiple-fault diagnosis problem with non-ideal tests[J]. Memetic Computing, 2020, 12 (2): 101- 113. |
130 | SINGH S , KODALI A , CHOI K , et al. Dynamic multiple fault diagnosis: mathematical formulations and solution techniques[J]. IEEE Trans.on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2008, 39 (1): 160- 176. |
131 | ZHANG S G , WANG L , LIU Y , et al. Real time fault diagnosis with tests of uncertain quality for multimode systems and its application in a satellite power system[J]. Journal of Electronic Testing, 2018, 34 (5): 529- 545. |
132 | ZHANG S G , HU Z , WEN X S . Sequential fault diagnosis strategy with imperfect tests considering life cycle cost[J]. Journal of Central South University, 2013, 20 (12): 3513- 3521. |
133 | WANG J Y , LIU Z , CHEN X W , et al. Anovel bottom-up/top-down hybrid strategy-based fast sequential fault diagnosis method[J]. Electronics, 2021, 10 (12): 1441. |
134 | TIAN H, DUAN F H, FAN L, et al. Fault diagnostic strategy of multivalued attribute system based on growing algorithm[C]//Proc. of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2019, 233(2): 235-245. |
135 | LIAO X Y, LI Y, LU N Y, et al. Optimal test sequencing method with unreliable tests based on quasi-depth first search algorithm[C]//Proc. of the CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes, 2019: 794-798. |
136 | GUO M W , NI S H , ZHU J H . Intelligent built-in test fault diagnosis and prediction for mechatronics equipment[J]. Applied Mechanics and Materials, 2012, 128, 164- 167. |
137 | LIANG Y J , XIAO M Q , TANG X L , et al. A Q-learning based method of optimal fault diagnostic policy with imperfect tests[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36 (6): 6013- 6024. |
138 | RODLER P. On active learning strategies for sequential diagnosis[C]//Proc. of the 28th International Workshop on Principles of Diagnosis, 2017: 264-283. |
139 | SHI J Y , HE Q J , WANG Z L . Integrated stateflow-based simulation modelling and testability evaluation for electronic built-in-test (BIT) systems[J]. Reliability Engineering & System Safety, 2020, 202, 107066. |
[1] | 杨振亚, 张智, 尚晓兵, 曹择骏, 孙喆轩. 基于改进多输出支持向量的船舶航迹预测[J]. 系统工程与电子技术, 2024, 46(1): 173-181. |
[2] | 黄嘉, 常思江. 基于数据驱动的攻击时间和攻击角度控制导引律[J]. 系统工程与电子技术, 2022, 44(10): 3213-3220. |
[3] | 邢志伟, 刘洪恩, 李彪, 罗谦, 文涛, 陈肇欣. 基于时空关联网络的机场机位运行过程建模[J]. 系统工程与电子技术, 2021, 43(3): 722-730. |
[4] | 孟晨, 杨华晖, 王成, 马征. 数据驱动的武器系统电子元部件级故障诊断研究综述[J]. 系统工程与电子技术, 2021, 43(2): 574-583. |
[5] | 阳榴, 朱卫纲, 吕守业, 马爽. 面向非协作多功能雷达的波形单元提取方法[J]. 系统工程与电子技术, 2021, 43(10): 2843-2850. |
[6] | 王鹏, 杨妹, 祝建成, 鞠儒生, 李革. 面向数字孪生的动态数据驱动建模与仿真方法[J]. 系统工程与电子技术, 2020, 42(12): 2779-2786. |
[7] | 叶文, 吕鑫燚, 吕晓峰, 马羚. 考虑关键故障的测试优化选择[J]. 系统工程与电子技术, 2019, 41(7): 1583-1589. |
[8] | 张翔, 李革, 王鹏. 基于动态数据驱动的反潜战仿真系统目标探测设计[J]. 系统工程与电子技术, 2018, 40(11): 2591-. |
[9] | 葛承垄, 朱元昌, 邸彦强, 胡志伟. 装备平行仿真技术的基础理论问题[J]. 系统工程与电子技术, 2017, 39(5): 1169-1177. |
[10] | 徐建国, 李孟军, 姜江, 游翰霖. 数据驱动的技术创新网络模体分析[J]. 系统工程与电子技术, 2017, 39(5): 1072-1077. |
[11] | 黄以锋, 景博, 毋养民. 分层系统序贯诊断策略[J]. 系统工程与电子技术, 2015, 37(2): 360-364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||