1 |
李琛,黄炎焱,张永亮,等.Actor-Critic框架下的多智能体决策方法及其在兵棋上的应用[J].系统工程与电子技术,2021,43(3):755-762.
|
|
LIC,HUANGY Y,ZHANGY L,et al.Multi-agent decision-making method based on Actor-Critic framework and its application in wargame[J].Systems Engineering and Electronics,2021,43(3):755-762.
|
2 |
SILVERD,HUANGA,MADDISONC J,et al.Mastering the game of Go with deep neural networks and tree search[J].Nature,2016,529(7587):484-489.
doi: 10.1038/nature16961
|
3 |
胡晓峰,贺筱媛,陶九阳.AlphaGo的突破与兵棋推演的挑战[J].科技导报,2017,35(21):49-60.
|
|
HUX F,HEX Y,TAOJ Y.AlphaGo's breakthrough and challenges of wargaming[J].Science & Technology Review,2017,35(21):49-60.
|
4 |
孙宇祥,彭益辉,李斌,等.智能博弈综述: 游戏AI对作战推演的启示[J].智能科学与技术学报,2022,4(2):157-173.
|
|
SUNY X,PENGY H,LIB,et al.Overview of intelligent game: enlightenment of game AI to combat deduction[J].Chinese Journal of Intelligent Science and Technology,2022,4(2):157-173.
|
5 |
SILVERD,SCHRITTWIESERJ,SIMONYANK,et al.Mastering the game of go without human knowledge[J].Nature,2017,550(7676):354-359.
doi: 10.1038/nature24270
|
6 |
ESPEHOLT L, SOYER H, MUNOS R, et al. IMPALA: scalable distributed deep-RL with importance weighted actor-learner architectures[C]//Proc. of the 35th International Conference on Machine Learning, 2018: 1407-1416.
|
7 |
BARRIGAN A,STANESCUM,BESOAINF,et al.Improving RTS game AI by supervised policy learning, tactical search, and deep reinforcement learning[J].IEEE Computational Intelligence Magazine,2019,14(3):8-18.
doi: 10.1109/MCI.2019.2919363
|
8 |
YE D H, LIU Z, SUN M F, et al. Mastering complex control in MOBA games with deep reinforcement learning[C]//Proc. of the 34th AAAI Conference on Artificial Intelligence, 2020, 34(4): 6672-6679.
|
9 |
JADERBERGM,CZARNECKIW M,DUNNINGI,et al.Human-level performance in 3D multiplayer games with population-based reinforcement learning[J].Science,2019,364(6443):859-865.
doi: 10.1126/science.aau6249
|
10 |
尹奇跃,赵美静,倪晚成,等.兵棋推演的智能决策技术与挑战[J].自动化学报,2023,49(5):913-928.
|
|
YINQ Y,ZHAOM Q,NIW C,et al.Intelligent decision making technology andchallenge of wargame[J].Acta Automatica Sinica,2023,49(5):913-928.
|
11 |
NICOLAUM,PEREZ-LIEBANAD,O'NEI-LLM,et al.Evolutionary behavior tree approaches for navigating platform games[J].IEEE Trans.on Computational Intelligence and AI in Games,2017,9(3):227-238.
doi: 10.1109/TCIAIG.2016.2543661
|
12 |
NAJAM-UL-LSLAMM,ZAHRAF T,JAFRIA R,et al.Auto implementation of parallel hardware architecture for Aho-Corasick algorithm[J].Design Automation for Embbedded System,2022,26(1):29-53.
doi: 10.1007/s10617-021-09257-7
|
13 |
施伟,冯旸赫,程光权,等.基于深度强化学习的多机协同空战方法研究[J].自动化学报,2021,47(7):1610-1623.
|
|
SHIW,FENGY H,CHENGG Q,et al.Research on multi-aircraft cooperative air combat method based on deep reinforcement learning[J].Acta Automatica Sinica,2021,47(7):1610-1623.
|
14 |
CHENL,LIANGX X,FENGY H,et al.Online intention recognition with incomplete information based on a weighted contrastive predictive coding model in wargame[J].IEEE Trans.on Neural Networks and Learning Systems,2023,34(10):7515-7528.
doi: 10.1109/TNNLS.2022.3144171
|
15 |
张振,黄炎焱,张永亮,等.基于近端策略优化的作战实体博弈对抗算法[J].南京理工大学学报,2021,45(1):77-83.
|
|
ZHANGZ,HUANGY Y,ZHANGY L,et al.Battle entity confrontation algorithm based on proximal policy optimization[J].Journal of Nanjing University of Science and Technology,2021,45(1):77-83.
|
16 |
SUNY X,YUANB,ZHOUX Z,et al.Intelligent decision-making and human language communication based on deep reinforcement learning in a Wargame environment[J].IEEE Trans.on Human-Machine Systems,2023,53(1):201-214.
doi: 10.1109/THMS.2022.3225867
|
17 |
RUEDENL V,MAYERS,BECKHK,et al.Informed machine learning: a taxonomy and survey of integrating prior knowledge into learning systems[J].IEEE Trans.on Know-ledge and Data Engineering,2021,35(1):614-633.
|
18 |
SUNY X,YUANB,ZHANGT,et al.Research andimplementation of intelligent decision based on a priori knowledge and DQN algorithms in wargame environment[J].Electronics,2020,9(10):1668.
doi: 10.3390/electronics9101668
|
19 |
XUEY F,SUNY X,ZHOUJ W,et al.Multi-attribute decision-making in wargames leveraging the entropy-weight method with deep reinforcement learning[J].IEEE Trans.on Games,2024,16(1):151-161.
doi: 10.1109/TG.2023.3236065
|
20 |
YOONP K,HWANGC L,YOONK.Multiple attribute decision making: an introduction[M].New York:Thousand Oaks Sage Publications,1995.
|
21 |
YAOY Y.The superiority of three-way decisions in probabilistic rough set models[J].Information Sciences,2011,181(6):1080-1096.
doi: 10.1016/j.ins.2010.11.019
|
22 |
WANGW J,ZHANJ M,ZHANGC,et al.A regret-theory-based three-way decision method with a priori probability tole-rance dominance relation in fuzzy incomplete information systems[J].Information Fusion,2023,89,382-396.
doi: 10.1016/j.inffus.2022.08.027
|
23 |
ZHANJ M,JIANGH B,YAOY Y.Three-way multi-attri-bute decision-making based on outranking relations[J].IEEE Trans.on Fuzzy Systems,2021,29(10):2844-2858.
doi: 10.1109/TFUZZ.2020.3007423
|
24 |
PENG L S, ZHANG T, ZHANG X Y, et al. Threat assessment for aerial targets based on three-way multi-criteria decision making[C]//Proc. of the IEEE International Conference on Networking, Sensing and Control, 2021.
|
25 |
PENGL S,ZHOUX Z,ZHAOJ J,et al.Three-way multi-attribute decision making under incomplete mixed environments using probabilistic similarity[J].Information Science,2022,614,432-463.
doi: 10.1016/j.ins.2022.10.038
|
26 |
HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft Actor-Critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]//Proc. of the 35th International Conference on Machine Learning, 2018.
|
27 |
DE JESUSJ C,KICHV A,KOLLINGA H,et al.Soft actor-critic for navigation of mobile robots[J].Journal of Intelligent & Robotic Systems,2021,102(2):31-42.
|
28 |
杨来义,毕敬,苑海涛.基于SAC算法的移动机器人智能路径规划[J].系统仿真学报,2023,35(8):1726-1736.
|
|
YANGL Y,BIJ,YUANH T.Intelligent path planning for mobile robots based on soft actor-critic algorithm[J].Journal of System Simulation,2023,35(8):1726-1736.
|
29 |
张建东,王鼎涵,杨啟明,等.基于分层强化学习的无人机空战多维决策[J].兵工学报,2023,44(6):1547-1563.
|
|
ZHANGJ D,WANGD H,YANGQ M,et al.Multi-dimensional decision-making for UAV air combat based on hierarchical rein-forcement learning[J].Acta Armamentarii,2023,44(6):1547-1563.
|
30 |
单麒源,张智豪,张耀心,等.基于SAC算法的矿山应急救援智能车快速避障控制[J].黑龙江科技大学学报,2021,31(1):14-20.
|
|
SHANQ Y,ZHANGZ H,ZHANGY X,et al.High speed obstacle avoidance control of mine emergency rescue intelligent vehicle based on SAC algorithm[J].Journal of Heilongjiang University of Science and Technology,2021,31(1):14-20.
|
31 |
夏琳. 基于深度强化学习的海上作战仿真推演决策方法研究[D]. 北京: 中国舰船研究院, 2023.
|
|
XIA L. Research ondecision making method of maritime combat simulation based on deep reinforcement learning[D]. Beijing: Chinese Journal of Ship Research, 2023.
|
32 |
赵烨南,杜伟伟,陈铁健,等.基于集对分析的坦克多目标威胁评估方法[J].火力与指挥控制,2020,45(6):108-112.
|
|
ZHAOY N,DUW W,CHENT J,et al.Multi-target threat assessment method of tank based on set pair analysis[J].Fire Control & Command Control,2020,45(6):108-112.
|
33 |
张晓南,王德泉,杨俊峰.坦克战场目标威胁评估方法[J].指挥信息系统与技术,2015,6(1):45-48.
|
|
ZHANGX N,WANGD Q,YANGJ F.Battlefield target threat assessment for tank[J].Command Information System and Technology,2015,6(1):45-48.
|
34 |
孙宇祥,李原白,周胜,等.对抗环境下的智能兵棋系统设计及其关键技术[J].火力与指挥控制,2024,49(2):33-41.
|
|
SUNY X,LIY B,ZHOUS,et al.Design anel key technology of intelligent wargame system in adversary environment[J].Fire Control & Command Control,2024,49(2):33-41.
|