系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (7): 2256-2268.doi: 10.12305/j.issn.1001-506X.2024.07.09
• 传感器与信号处理 • 上一篇
张瑞斌1, 朱梦韬1,2,3, 李云杰1,2,3,*
收稿日期:
2023-05-04
出版日期:
2024-06-28
发布日期:
2024-07-02
通讯作者:
李云杰
作者简介:
张瑞斌(1998—), 男, 硕士研究生, 主要研究方向为雷达电子对抗、机器学习Ruibin ZHANG1, Mengtao ZHU1,2,3, Yunjie LI1,2,3,*
Received:
2023-05-04
Online:
2024-06-28
Published:
2024-07-02
Contact:
Yunjie LI
摘要:
雷达对抗场景中, 电子侦察系统通过引入基于深度学习方法的智能脉冲调制识别网络, 极大提升了对雷达信号的识别准确率。为了提高雷达信号的调制隐身抗识别能力, 提出一种可以令深度识别网络错误预测的雷达发射信号生成方法。该方法首先通过短时傅里叶变换得到信号的时频谱; 然后迭代生成携带调制隐身信息的时频谱; 最后利用改进逆短时傅里叶变换得到时域调制隐身发射信号。该方法生成的雷达信号对以时频图为输入的调制识别网络隐身, 并可实现回波信号的脉冲压缩处理。仿真结果验证了所生成信号的抗识别有效性、噪声鲁棒性和脉压可行性。
中图分类号:
张瑞斌, 朱梦韬, 李云杰. 对调制识别网络隐身的雷达发射信号生成方法[J]. 系统工程与电子技术, 2024, 46(7): 2256-2268.
Ruibin ZHANG, Mengtao ZHU, Yunjie LI. Radar transmitting signal generation method for modulation recognition network stealth[J]. Systems Engineering and Electronics, 2024, 46(7): 2256-2268.
表4
ASR"
模型 | 攻击成功率 | -10 dB | -6 dB | -2 dB | 0 dB | 2 dB | 6 dB | 10 dB | 理想信号 |
VGG16 | ASR1 | 96.67 | 97.78 | 98.89 | 95.56 | 94.44 | 88.89 | 92.21 | 92.22 |
ASR2 | 96.55 | 95.55 | 95.51 | 95.35 | 96.47 | 95.00 | 95.45 | 98.82 | |
ASR3 | 80.95 | 77.15 | 83.81 | 85.71 | 82.86 | 84.76 | 85.71 | 92.38 | |
ASR | 75.55 | 72.08 | 79.16 | 78.10 | 75.49 | 71.58 | 75.44 | 84.19 | |
ResNet18 | ASR1 | 98.89 | 91.11 | 93.33 | 88.89 | 86.67 | 82.22 | 77.78 | 77.78 |
ASR2 | 94.38 | 94.25 | 94.32 | 94.12 | 93.75 | 93.56 | 95.77 | 96.15 | |
ASR3 | 100.00 | 100.00 | 98.10 | 100.00 | 100.00 | 100.00 | 100.00 | 99.05 | |
ASR | 93.33 | 85.87 | 86.36 | 83.66 | 81.25 | 76.93 | 74.49 | 74.08 | |
CNN-base | ASR1 | 100.00 | 100.00 | 98.89 | 98.89 | 100.00 | 98.89 | 95.56 | 92.22 |
ASR2 | 97.78 | 100.00 | 98.89 | 100.00 | 100.00 | 98.88 | 100.00 | 100.00 | |
ASR3 | 79.05 | 77.14 | 85.72 | 95.24 | 90.47 | 87.62 | 93.33 | 92.38 | |
ASR | 77.30 | 77.14 | 83.83 | 94.18 | 90.47 | 85.68 | 89.19 | 85.19 |
表5
调制隐身信号峰均比"
模型 | 信号类型 | -10 dB | -6 dB | -2 dB | 0 dB | 2 dB | 6 dB | 10 dB | 理想信号 |
VGG16 | Barker | 6.05 | 5.72 | 5.32 | 5.02 | 4.46 | 3.54 | 2.86 | 1.67 |
Costas | 5.55 | 5.51 | 5.17 | 4.96 | 4.07 | 3.58 | 2.70 | 1.40 | |
LFM | 5.78 | 5.82 | 5.12 | 5.04 | 4.69 | 3.92 | 2.93 | 1.40 | |
ResNet18 | Barker | 6.21 | 5.87 | 5.43 | 5.02 | 3.25 | 3.47 | 2.76 | 2.37 |
Costas | 5.94 | 5.49 | 5.49 | 4.69 | 4.52 | 4.51 | 3.76 | 2.69 | |
LFM | 5.88 | 5.79 | 5.35 | 5.66 | 5.08 | 4.35 | 4.73 | 3.77 | |
CNN-base | Barker | 6.08 | 5.60 | 4.89 | 5.16 | 4.46 | 3.54 | 3.11 | 5.28 |
Costas | 5.69 | 5.48 | 5.35 | 4.75 | 4.65 | 4.05 | 3.67 | 5.14 | |
LFM | 5.83 | 5.49 | 5.04 | 5.52 | 4.74 | 3.78 | 3.76 | 7.14 |
表6
调制隐身信号迁移ASR"
隐身信号生成方法 | 替代识别模型 | 目标识别模型 | |||||||
VGG11 | VGG13 | VGG16 | VGG19 | ResNet18 | ResNet34 | ResNet50 | CNN-base | ||
本文方法 | VGG16 | 43.33 | 41.11 | 98.89(白) | 53.33 | 40.00 | 37.78 | 36.67 | 23.33 |
ResNet18 | 65.56 | 66.67 | 66.67 | 52.23 | 100.00(白) | 72.22 | 78.89 | 22.22 | |
CNN-base | 74.67 | 78.89 | 48.89 | 76.67 | 42.22 | 47.78 | 55.56 | 97.77(白) | |
文献[ | VGG16 | 9.33 | 7.58 | 10.38 | 10.49 | 8.39 | 9.67 | 11.77 | 14.92 |
ResNet18 | 1.74 | 1.62 | 1.53 | 1.85 | 1.04 | 1.64 | 2.03 | 2.33 | |
CNN-base | 4.33 | 3.15 | 7.08 | 3.74 | 6.10 | 4.33 | 6.30 | 8.07 |
1 | 王谦喆, 何召阳, 宋博文, 等. 射频隐身技术研究综述[J]. 电子与信息学报, 2018, 40 (6): 1505- 1514. |
WANG Q Z , HE Z Y , SONG B W , et al. Overview on RF stealth technology research[J]. Journal of Electronics & Information Technology, 2018, 40 (6): 1505- 1514. | |
2 | 樊依晨. 机载战场侦察雷达射频隐身波形设计[D]. 北京: 中国电子科技集团公司电子科学研究院, 2021. |
FAN Y C. Research on RF stealth waveform design of airborne battlefield surveillance radar[D]. Beijing: China Academic of Electronics and Information Technology, 2021. | |
3 |
WANG W Q . Moving-target tracking by cognitive RF stealth radar using frequency diverse array antenna[J]. IEEE Trans. on Geoscience and Remote Sensing, 2016, 54 (7): 3764- 3773.
doi: 10.1109/TGRS.2016.2527057 |
4 | YANG H B, ZHOU J J, WANG F, et al. Design and analysis of Costas/PSK RF stealth signal waveform[C]//Proc. of the IEEE/CIE International Conference on Radar, 2011: 1247-1250. |
5 | 杨宇晓, 左瑞芹. 基于混沌序列的射频隐身跳频周期设计方法[J]. 航空兵器, 2016, (5): 34- 38. |
YANG Y X , ZUO R Q . A design method for hopping cycle of RF stealth based on chaotic sequences[J]. Aero Weaponry, 2016, (5): 34- 38. | |
6 | 王志涛. 基于MIMO-OFDM的低截获概率雷达波形设计方法与仿真实现[D]. 西安: 西安电子科技大学, 2017. |
WANG Z T. MIMO-OFDM waveform design and simulation of LPI radar[D]. Xi'an: Xidian University, 2017. | |
7 | YANG Y X , WANG D X , HUANG Q . Design method of radio frequency stealth frequency hopping communications based on four-dimensional hyperchaotic system[J]. Journal of Astronautics, 2020, 41 (10): 1341- 1349. |
8 |
JIA J W , HAN Z Z , LIANG Y Y , et al. Design of multi-parameter compound modulated RF stealth anti-sorting signals based on hyperchaotic interleaving feedback[J]. Entropy, 2022, 24 (9): 1283- 1314.
doi: 10.3390/e24091283 |
9 | 孙岩博, 王亚涛, 黄小艳. 基于随机化调制的射频隐身波形识别性能分析[J]. 计算机仿真, 2020, 37 (10): 1-5, 13. |
SUN Y B , WANG Y T , HUANG X Y . Recognition performance analysis of RF stealth waveform based on randomized modulations[J]. Computer Simulation, 2020, 37 (10): 1-5, 13. | |
10 |
付银娟, 李勇, 黄琼丹, 等. OFD-NLFM雷达信号的优化设计及射频隐身性能分析[J]. 系统工程与电子技术, 2017, 39 (10): 2209- 2214.
doi: 10.3969/j.issn.1001-506X.2017.10.08 |
FU Y J , LI Y , HUANG Q D , et al. Optimized design of OFD-NLFM radar signals and analysis of RF stealth performance[J]. Systems Engineering and Electronics, 2017, 39 (10): 2209- 2214.
doi: 10.3969/j.issn.1001-506X.2017.10.08 |
|
11 | 路晴辉. 机载认知雷达射频隐身波形设计及处理方法[D]. 成都: 电子科技大学, 2022. |
LU Q H. Radio frequency stealth waveform design and processing method for airborne cognitive radar[D]. Chengdu: University of Electronic Science and Technology of China, 2022. | |
12 | LI J C, QI L, LIN Y. Research on modulation identification of digital signals based on deep learning[C]//Proc. of the IEEE International Conference on Electronic Information and Communication Technology, 2016: 402-405. |
13 | WANG X B, HUANG G M, ZHOU Z W, et al. Radar emitter recognition based on the short time Fourier transform and convolutional neural networks[C]//Proc. of the 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, 2017: 1-5. |
14 |
ZHANG M , DIAO M , GUO L M . Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5, 11074- 11082.
doi: 10.1109/ACCESS.2017.2716191 |
15 |
QU Z Y , MAO X J , DENG Z A . Radar signal intra-pulse modulation recognition based on convolutional neural network[J]. IEEE Access, 2018, 6, 43874- 43884.
doi: 10.1109/ACCESS.2018.2864347 |
16 |
KONG S H , KIM M , HOANG L M , et al. Automatic LPI radar waveform recognition using CNN[J]. IEEE Access, 2018, 6, 4207- 4219.
doi: 10.1109/ACCESS.2017.2788942 |
17 | SUN D C, CHEN Y, LIU J A, et al. Digital signal modulation recognition algorithm based on VGGNet model[C]//Proc. of the IEEE 5th International Conference on Computer and Communication, 2019: 1575-1579. |
18 |
YU Z Y , TANG J L , WANG Z . GCPS: a CNN performance evaluation criterion for radar signal intrapulse modulation recognition[J]. IEEE Communications Letters, 2021, 25 (7): 2290- 2294.
doi: 10.1109/LCOMM.2021.3070151 |
19 | PAN Z S , WANG S F , ZHU M T , et al. Automatic waveform recognition of overlapping LPI radar signals based on multi-instance multi-label learning[J]. IEEE Signal Processing Letters, 2020, 27 (7): 1275- 1279. |
20 | JIANG W K , LI Y , LIAO M M , et al. An improved LPI radar waveform recognition framework with LDC-Unet and SSR-Loss[J]. IEEE Signal Processing Letters, 2021, 29 (11): 149- 153. |
21 |
PAN Z S , WANG S F , LI Y J . Residual attention aided U-net GAN and multi-instance multi-label classifier for automatic waveform recognition of overlapping LPI radar signals[J]. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (5): 4377- 4395.
doi: 10.1109/TAES.2022.3160978 |
22 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
23 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2023-03-02]. https://arxiv.org/abs/1409.1556. |
24 | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. [2023-03-23]. https://arxiv.org/abs/1312.6199v1. |
25 | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. [2023-03-23]. https://arxiv.org/abs/1412.6572v1. |
26 | DU C , CONG Y L , ZHANG L , et al. A practical deceptive jamming method based on vulnerable location awareness adversarial attack for radar HRRP target recognition[J]. IEEE Trans. on Information Forensics and Security, 2022, 17 (5): 2410- 2424. |
27 | TANG S T, TAO M L, SU J, et al. Radio signal smart deception based on adversarial learning[C]//Proc. of the CIE International Conference on Radar, 2021: 2259-2262. |
28 | YUAN X J, CHEN Y X, ZHAO Y, et al. CommanderSong: a systematic approach for practical adversarial voice recognition[C]//Proc. of the 27th USENIX Security Symposium, 2018: 49-64. |
29 | SADEGHI M , LARSSON E G . Adversarial attacks on deep-learning based radio signal classification[J]. IEEE Wireless Communications Letters, 2018, 8 (1): 213- 216. |
30 | XIE Y, SHI C, LI Z H, et al. Real-time, universal, and robust adversarial attacks against speaker recognition systems[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 1738-1742. |
31 |
ZHAO H J , TIAN Q , PAN L , et al. The technology of adversarial attacks in signal recognition[J]. Physical Communication, 2020, 43, 101199.
doi: 10.1016/j.phycom.2020.101199 |
32 | MCDANIEL P , PAPERNOT N , CELIK Z B . Machine learning in adversarial settings[J]. IEEE Security & Privacy, 2016, 14 (3): 68- 72. |
33 | MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. Deepfool: a simple and accurate method to fool deep neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2574-2582. |
34 | GABOR D . Theory of communication[J]. Journal of the Institution of Electrical Engineers-part Ⅲ: Radio and Communication Engineering, 1946, 93 (26): 429- 457. |
35 | LE-ROUX J, ONO N, SAGAYAMA S. Explicit consistency constraints for STFT spectrograms and their application to phase reconstruction[C]//Proc. of the ISCA Tutorial and Research Workshop on Statistical and Perceptual Audition, 2008: 23-28. |
36 |
GRIFFIN D , LIM J . Signal estimation from modified short-time Fourier transform[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1984, 32 (2): 236- 243.
doi: 10.1109/TASSP.1984.1164317 |
37 |
WANG Z , BOVIK A C , SHEIKH H R , et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans. on Image Processing,, 2004, 13 (4): 600- 612.
doi: 10.1109/TIP.2003.819861 |
38 | 宣琦, 周晴, 崔慧, 等. 信号人工智能对抗攻击综合分析平台[J]. 信息安全学报, 2021, 6 (4): 141- 149. |
XUAN Q , ZHOU Q , CUI H , et al. A comprehensive evaluation platform of adversarial attacks on artificial intelligence for signal[J]. Journal of Cyber Security, 2021, 6 (4): 141- 149. | |
39 |
DE M A , HUANG Y , PIEZZO M , et al. Design of optimized radar codes with a peak to average power ratio constraint[J]. IEEE Trans. on Signal Processing, 2011, 59 (6): 2683- 2697.
doi: 10.1109/TSP.2011.2128313 |
[1] | 牛闯, 林强, 段敏, 施端阳, 谷成刚. 脉内频率-时延捷变雷达抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2024, 46(5): 1583-1598. |
[2] | 刘俊, 崔宁, 谢佳昕, 行坤. 基于NSGA-Ⅲ的机载雷达空空射频隐身探测参数设计[J]. 系统工程与电子技术, 2024, 46(1): 97-104. |
[3] | 王磊, 张志勇, 胥辉旗, 曾维贵, 曹司磊. 基于VMD分解和多域联合分布的雷达辐射源识别[J]. 系统工程与电子技术, 2023, 45(8): 2479-2488. |
[4] | 崔天舒, 王栋, 黄振. 面向空间认知通信的轻量化网络自动调制分类方法[J]. 系统工程与电子技术, 2023, 45(7): 2220-2226. |
[5] | 贾金伟, 韩壮志, 刘利民, 解辉. 基于SDIF门限失效的雷达射频隐身信号设计原理[J]. 系统工程与电子技术, 2023, 45(6): 1693-1701. |
[6] | 宁晓燕, 李书凯, 王震铎, 赵东旭. 时变参数下信息映射LPI通信波形[J]. 系统工程与电子技术, 2023, 45(5): 1526-1534. |
[7] | 邓嘉宁, 李海旭, 安强林, 沙恩来, 王泽, 吴宇. 基于指标关联的舰载机出动架次率预测方法[J]. 系统工程与电子技术, 2023, 45(11): 3507-3515. |
[8] | 王冠, 茹海忠, 张大力, 马广程, 夏红伟. 弹性高超声速飞行器智能控制系统设计[J]. 系统工程与电子技术, 2022, 44(7): 2276-2285. |
[9] | 赵筱彤, 周建江. 低截获MIMO雷达改进MUSIC算法[J]. 系统工程与电子技术, 2022, 44(2): 490-497. |
[10] | 刘步花, 丁丹, 杨柳, 薛乃阳, 刘仲谦. 基于DNN的无人机数据OFDM传输技术[J]. 系统工程与电子技术, 2022, 44(2): 696-702. |
[11] | 徐桂光, 王旭东, 汪飞, 胡国兵, 高涌荇, 罗泽虎. 基于SE-ResNeXt网络的低信噪比LPI雷达辐射源信号识别[J]. 系统工程与电子技术, 2022, 44(12): 3676-3684. |
[12] | 许耀华, 朱成龙, 王翊, 蒋芳, 丁梦琴, 王慧平. 基于神经网络的高并行大规模MIMO信号检测算法[J]. 系统工程与电子技术, 2022, 44(12): 3843-3849. |
[13] | 周毅恒, 杨军, 夏赛强, 吕明久. 闪烁现象下旋翼目标微动参数估计方法[J]. 系统工程与电子技术, 2022, 44(1): 54-63. |
[14] | 窦山岳, 汪飞, 于伟强, 周建江, 陈军. 基于频控阵的多普勒波束锐化高度表设计[J]. 系统工程与电子技术, 2021, 43(9): 2383-2391. |
[15] | 胥彪, 李翔, 李爽, 张金鹏. 基于非线性模型预测控制的火星大气进入智能制导方法[J]. 系统工程与电子技术, 2021, 43(7): 1943-1953. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||