系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (7): 2201-2210.doi: 10.12305/j.issn.1001-506X.2024.07.04

• 电子技术 • 上一篇    

适用于点群共存场景的TPMBM跟踪算法

张双武1, 李翠芸1,*, 赵竞哲2, 衡博文1   

  1. 1. 西安电子科技大学电子工程学院, 陕西 西安 710071
    2. 中国电子科技集团公司第二十七研究所, 河南 郑州 450047
  • 收稿日期:2023-06-15 出版日期:2024-06-28 发布日期:2024-07-02
  • 通讯作者: 李翠芸
  • 作者简介:张双武 (1995—), 男, 硕士研究生, 主要研究方向为多目标跟踪、随机集滤波
    李翠芸 (1976—), 女, 副教授, 博士, 主要研究方向为多目标跟踪、随机集滤波
    赵竞哲 (1991—), 女, 工程师, 硕士, 主要研究方向为目标跟踪与智能规划
    衡博文 (1998—), 男, 硕士, 主要研究方向为多目标跟踪、随机集滤波
  • 基金资助:
    国家自然科学基金(61871301)

TPMBM tracking algorithm suitable for point-group coexistence scenarios

Shuangwu ZHANG1, Cuiyun LI1,*, Jingzhe ZHAO2, Bowen HENG1   

  1. 1. School of Electronic Engineering, Xidian University, Xi'an 710071, China
    2. The 27th Research Institute of China Electronics Technology Group Corporation, Zhengzhou 450047, China
  • Received:2023-06-15 Online:2024-06-28 Published:2024-07-02
  • Contact: Cuiyun LI

摘要:

针对传统群目标跟踪算法在点群共存场景下跟踪精度低的问题, 提出了可以同时对点目标和群目标进行跟踪的轨迹泊松多伯努利混合(trajectory Poisson multi-Bernoulli mixture, TPMBM)滤波算法。该算法对目标的状态空间进行扩展, 在标准点目标和群目标模型的基础上引入关于目标类别的概率信息, 通过TPMBM滤波器的预测和更新过程实现对目标类别的判断和对目标运动状态的估计。仿真结果表明, 与现有算法相比, 所提算法在点目标和群目标共存时漏检误差明显降低, 具有更优的跟踪性能。

关键词: 目标跟踪, 点群共存, 轨迹泊松多伯努利混合滤波

Abstract:

In order to solve the problem of low tracking accuracy of the traditional group target tracking algorithms in point-group coexistence scenarios, a trajectory Poisson multi-Bernoulli mixture (TPMBM) filte-ring algorithm is proposed, which can track both point target and group target simultaneously. The algorithm expands the state space of the target, introduces probability information about the target class based on the standard point target and the group target models, and achieves the judgment of the target class and the estimation of the target motion state through the prediction and update process of the TPMBM filter. Simulation results show that, compared with the existing algorithms, the proposed algorithm has significantly lower miss detection error and better tracking performance when point target and group target coexist.

Key words: target tracking, point-group coexistence, trajectory Poisson multi-Bernoulli mixture (TPMBM) filtering

中图分类号: