系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (7): 2175-2183.doi: 10.12305/j.issn.1001-506X.2024.07.01

• 电子技术 •    

多维阵列张量模型的鲁棒波束成形方法

毕权杨, 李旦, 张建秋   

  1. 复旦大学信息科学与工程学院, 上海 200433
  • 收稿日期:2023-07-12 出版日期:2024-06-28 发布日期:2024-07-02
  • 通讯作者: 李旦
  • 作者简介:毕权杨(1995—), 男, 博士研究生, 主要研究方向为信号处理
    李旦(1982—), 男, 副教授, 博士, 主要研究方向为信号处理及其应用
    张建秋(1962—), 男, 教授, 博士研究生导师, 博士, 主要研究方向为信号处理及其应用
  • 基金资助:
    国家自然科学基金(11974082)

Robust beamforming method for multi-dimensional array tensor models

Quanyang BI, Dan LI, Jianqiu ZHANG   

  1. School of Information Science and Engineering, Fudan University, Shanghai 200433, China
  • Received:2023-07-12 Online:2024-06-28 Published:2024-07-02
  • Contact: Dan LI

摘要:

传统波束成形算法在应对维数较高的多维阵列时, 训练快拍数难以满足远大于信号维数这一要求, 从而导致波束成形器性能急剧下降。针对这一问题, 本文给出了多维阵列输出数据的张量模型, 基于多维阵列子维度的可分离性, 引入张量波束成形方法, 分析了其在训练快拍数需求上具有的优势。然后, 基于张量波束成形中子维度干扰协方差矩阵的模型, 通过直接估计干扰协方差矩阵实现了一种鲁棒张量波束成形方法。分析表明: 该方法可更好地应对非均匀杂波环境以及相干干扰, 并得到更高的输出信干噪比, 以给出的二维极化敏感阵列为例, 所提方法的训练快拍数需求为传统方法的1/3, 相干干扰下输出信干噪比提高了约2.5 dB, 仿真验证了分析的有效性。

关键词: 鲁棒波束成形, 张量波束成形, 多维阵列, 相干干扰

Abstract:

Traditional beamforming performance will significantly degrade with insufficient training samples on multi-dimensional arrays with much higher dimensions. In this paper, a tensor beamforming method that has advantages in the number of training snapshots required is introduced based on the proposed tensor model and the separability of sub-dimensions for multi-dimensional arrays. Then, for coherent interference, based on the model of the sub-dimension' s interference covariance matrix in tensor beamforming, a robust tensor beamforming method is proposed by directly estimating the interference covariance matrix. Analysis shows that the proposed method could overcome the non-homogeneous clutter environment and coherent interference and obtain a higher output signal-to-interference-noise ratio. Taking the given two-dimensional polarization-sensitive array as an example, the number of training snaps required by the proposed method is 1/3 of the traditional method, and the output signal-to-interference-to-noise ratio increases by about 2.5 dB under coherent interference scenario. The simulation results verify the effectiveness of the analysis.

Key words: robust beamforming, tensor beamforming, multi-dimensional array, coherent interference

中图分类号: