1 |
周红平, 马明辉, 吴若无, 等. 基于稀疏表示分类的雷达欺骗干扰识别方法[J]. 系统工程与电子技术, 2022, 44 (9): 2791- 2799.
|
|
ZHOU H P , MA M H , WU R W , et al. Deception jamming recog-nition of radar based on sparse representation classification[J]. Systems Engineering and Electronics, 2022, 44 (9): 2791- 2799.
|
2 |
MUGHAL M O , KIM S . Signal classification and jamming detection in wide-band radios using Naive Bayes classifier[J]. IEEE Communications Letters, 2018, 22 (7): 1398- 1401.
doi: 10.1109/LCOMM.2018.2830769
|
3 |
SHI Y X , LU X J , NIU Y T , et al. Efficient jamming identification in wireless communication: using small sample data driven Naive Bayes classifier[J]. IEEE Wireless Communications Letters, 2021, 10 (7): 1375- 1379.
doi: 10.1109/LWC.2021.3064843
|
4 |
ZHANG L , REN J , LI T T . Time-varying jamming modeling and classification[J]. IEEE Trans.on Signal Processing, 2012, 60 (7): 3902- 3907.
doi: 10.1109/TSP.2012.2193574
|
5 |
SHAO G Q , CHEN Y S , WEI Y S . Convolutional neural network-based radar jamming signal classification with sufficient and limited samples[J]. IEEE Access, 2020, 8, 80588- 80598.
doi: 10.1109/ACCESS.2020.2990629
|
6 |
HAN H , LI W , FENA Z B , et al. Proceed from known to unknown: jamming pattern recognition under open-set setting[J]. IEEE Wireless Communications Letters, 2022, 11 (4): 693- 697.
doi: 10.1109/LWC.2021.3140145
|
7 |
靳增源, 张晓瀛, 谭思源, 等. 基于集成时频通道注意力的倒残差神经网络干扰识别[J]. 信号处理, 2023, 39 (2): 343- 355.
|
|
JIN Z Y , ZHANG X Y , TAN S Y , et al. Jamming identification based on inverse residual neural network with integrated time-frequency channel attention[J]. Journal of Signal Processing, 2023, 39 (2): 343- 355.
|
8 |
SHAO G G , CHEN Y S , WEI Y S . Deep fusion for radar jamming signal classification based on CNN[J]. IEEE Access, 2020, 8, 117236- 117244.
doi: 10.1109/ACCESS.2020.3004188
|
9 |
邵正途, 许登荣, 徐文利, 等. 基于LSTM和残差网络的雷达有源干扰识别[J]. 系统工程与电子技术, 2023, 45 (2): 416- 423.
|
|
SHAO Z T , XU D R , XU W L , et al. Radar active jamming recognition based on LSTM and residual network[J]. Systems Engineering and Electronics, 2023, 45 (2): 416- 423.
|
10 |
王李静. 航天测控链路干扰多维感知及决策研究[D]. 成都: 电子科技大学, 2020.
|
|
WANG L J. Research on multidimensional perception and decision-marking of interference in space TT&C links[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
11 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proc. of the Advances in Neural Information Processing Systems, 2017.
|
12 |
DOSOVITSHIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2023-05-10]. https://arxiv.org/abs/2010.11929.
|
13 |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[EB/OL]. [2023-05-10]. https://arxiv.org/abs/1602.07360.
|
14 |
MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: practical guidelines for efficient CNN architecture design[C]//Proc. of the European conference on computer vision, 2018: 116-131.
|
15 |
HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
|
16 |
TAN M X, LE Q. EfficientNetV2: Smaller models and faster training[C]//Proc. of the International Conference on Machine Learning, 2021: 10096-10106.
|
17 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|