1 |
刘钢, 汤俊, 刘陈, 等. 无人飞行器集群协同行为建模技术综述[J]. 系统工程与电子技术, 2021, 43 (8): 2221- 2231.
|
|
LIU G , TANG J , LIU C , et al. Survey of cooperative behavior modeling technology for unmanned aerial vehicles clusters[J]. Systems Engineering and Electronics, 2021, 43 (8): 2221- 2231.
|
2 |
贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41 (S1): 4- 14.
|
|
JIA Y N , TIAN S Y , LI Q . Development of unmanned aerial vehicles warms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (S1): 4- 14.
|
3 |
安凯, 郭振云, 黄伟, 等. 低/高速飞行器系统编队协同控制方法研究进展[J]. 航空兵器, 2022, 29 (5): 53- 65.
|
|
AN K , GUO Z Y , HUANG W , et al. Research progress of formation-cooperative control methods for low-speed and high-speed vehicle systems[J]. Aero Weaponry, 2022, 29 (5): 53- 65.
|
4 |
ZHAO M J , PENG Y , WANG Y Y , et al. Concise leader-foll-ower formation control of underactuated unmanned surface vehicle with output error constraints[J]. Transactions of the Institute of Measurement and Control, 2022, 44 (5): 1081- 1094.
doi: 10.1177/01423312211047104
|
5 |
ZHAO J B, CHEN Y D, LIANG X, et al. Cooperative guidance for seeker-less missile based on leader-follower framework[C]//Proc. of the IEEE International Conference on Unmanned Systems, 2021: 134-139.
|
6 |
ZHAO L D , LIU Y M , PENG Q Q , et al. A dual aircraft maneuver formation controller for MAV/UAV based on the hybrid intelligent agent[J]. Drones, 2023, 7 (5): 282.
doi: 10.3390/drones7050282
|
7 |
SONG R Z , XING S , XU Z . Finite-time leader-follower consensus of a discrete-time system via sliding mode control[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23 (7): 1057- 1068.
|
8 |
LI Z K, ER M J, WANG B H, et al. Leader-follower formation control of unmanned surface vehicles using non-singular terminal sliding mode strategy[C]//Proc. of the IEEE 4th International Conference on Intelligent Autonomous Systems, 2021: 318-323.
|
9 |
MOUSAVI A , MARKAZI A H D . An adaptive fuzzy sliding-mode control method for leader-follower consensus of uncertain non-square nonlinear systems[J]. International Journal of Adaptive Control and Signal Processing, 2022, 36 (12): 3230- 3253.
doi: 10.1002/acs.3504
|
10 |
ZHANG J , ZHANG H G , LUO Y H , et al. Adaptive event-triggered leader-follower consensus of linear multiagent systems under directed graph with nonzero leader input[J]. IEEE Trans.on Circuits and Systems Ⅱ-Express Briefs, 2022, 69 (3): 1442- 1446.
doi: 10.1109/TCSII.2021.3115487
|
11 |
WU T Y , XUE K , WANG P . Leader-follower formation control of USVs using APF-based adaptive fuzzy logic nonsingular terminal sliding mode control method[J]. Journal of Mechanical Science and Technology, 2022, 36 (4): 2007- 2018.
doi: 10.1007/s12206-022-0336-y
|
12 |
CAI Z H , WANG L H , ZHAO J , et al. Virtual target gui-dance-based distributed model predictive control for formation control of multiple UAVs[J]. Chinese Journal of Aeronautics, 2020, 33 (3): 1037- 1056.
doi: 10.1016/j.cja.2019.07.016
|
13 |
PEDRO P , BRUNO J G , PEDRO L . Distributed model predictive control method for spacecraft formation flying in a leader-follower formation[J]. IEEE Trans.on Aerospace and Electronic Systems, 2023, 59 (3): 3213- 3223.
doi: 10.1109/TAES.2022.3224692
|
14 |
SOMASUNDAR K, PARIJAT B, SEYED A S A. Model predictive control of connected spacecraft formation[C]//Proc. of the 22nd International-Federation-of-Automatic-Control Sym posium on Automatic Control in Aerospace, 2022: 322-327.
|
15 |
WU R, GUO X, ZHOU H, et al. A method for formation control of autonomous underwater vehicle formation navigation based on consistency[C]//Proc. of the Bio-Inspired Computing: Theories and Applications, 2022: 142-157.
|
16 |
LI H, XUE S S, CAO H, et al. Leader-follower formation control of second-order multiagent system based on fuzzy logic system[C]//Proc. of the 5th Chinese Conference on Swarm Intelligence and Cooperative Control, 2023: 1143-1152.
|
17 |
YAN Y Q , ZHANG H G , WANG Y C , et al. Event-driven adaptive distributed consensus for fuzzy fractional order multi-agent systems[J]. IEEE Trans.on Circuits and Systems Ⅱ-Express Briefs, 2022, 69 (8): 3405- 3409.
doi: 10.1109/TCSII.2021.3139066
|
18 |
LI Y Y, DAI X S. PD-type distributed ILC protocol of consensus for nonlinear multi-agent system with fuzzy topology structure[C]//Proc. of the IEEE 11th Data Driven Control and Learning Systems Conference, 2022: 953-958.
|
19 |
WANG X F , MA H J , KANG H B . Fuzzy adaptive group obstacle avoidance control for second-order multi-agent systems under fixed and switching topologies[J]. IEEE Trans.on Network Science and Engineering, 2023, 10 (2): 619- 630.
doi: 10.1109/TNSE.2022.3213342
|
20 |
ANDERSON B D O A , YU C B , FIDAN B , et al. Rigid graph control architectures for autonomous formations[J]. IEEE Control Systems Magazine, 2008, 28 (6): 48- 63.
doi: 10.1109/MCS.2008.929280
|
21 |
LIN Z Y, CHEN Z Y, FU M Y. A linear control approach to distributed multi-agent formations in 3-dimensional space[C]// Proc. of the IEEE 52nd Conference on Decision and Control, 2013: 6049-6054.
|
22 |
WANG L L, LIN Z Y, FU M Y. Affine formation of multi-agent systems over directed graphs[C]//Proc. of the IEEE 53rd Annual Conference on Decision and Control, 2015: 3017-3022.
|
23 |
LIN Z Y , WANG L L , CHEN Z Y , et al. Necessary and sufficient graphical conditions for affine formation control[J]. IEEE Trans.on Automatic Control, 2016, 61 (10): 2877- 2891.
doi: 10.1109/TAC.2015.2504265
|
24 |
KWON S H, TRINH M H, OH K H, et al. Infinitesimal weak rigidity, formation control of three agents, and extension to 3-dimensional space[EB/OL]. [2018-03-26]. http://arxiv.org/abs/1803.09545.
|
25 |
PARK M C, KIM H K, AHN H S. Rigidity of distance-based formations with additional subtended-angle constraints[C]//Proc. of the IEEE 17th International Conference on Control, Automation and Systems, 2017: 111-116.
|
26 |
TANG Z Q , CUNHA R T , HAMEL T , et al. Formation control of a leader-follower structure in three dimensional space using bearing measurements[J]. Automatica, 2021, 128, 109567.
doi: 10.1016/j.automatica.2021.109567
|
27 |
ZHAO S Y , ZELAZO D . Bearing rigidity and almost global bearing-only formation stabilization[J]. IEEE Trans.on Automatic Control, 2016, 61 (5): 1255- 1268.
doi: 10.1109/TAC.2015.2459191
|
28 |
XU Y , ZHAO S Y , LUO D L , et al. Affine formation maneuver control of high-order multi-agent systems over directed networks[J]. Automatica, 2020, 118, 109004.
doi: 10.1016/j.automatica.2020.109004
|
29 |
谢光强, 章云. 多智能体系统协调控制一致性问题研究综述[J]. 计算机应用研究, 2011, 28 (6): 2035- 2039.
doi: 10.3969/j.issn.1001-3695.2011.06.008
|
|
XIE G Q , ZHANG Y . Survey of consensus problem in coope-rative control of multi-agent systems[J]. Application Research of Computers, 2011, 28 (6): 2035- 2039.
doi: 10.3969/j.issn.1001-3695.2011.06.008
|
30 |
ZHANG H S , LI L , XU J J , et al. Linear quadratic regulation and stabilization of discrete-time systems with delay and multiplicative noise[J]. IEEE Trans.on Automatic Control, 2015, 60 (10): 2599- 2613.
doi: 10.1109/TAC.2015.2411911
|
31 |
OLFATI-SABER R , FAX J A , MURRAY R M . Consensus and cooperation in networked multi-agent systems[J]. Proceedings of the IEEE, 2007, 95 (1): 215- 233.
doi: 10.1109/JPROC.2006.887293
|
32 |
ZHAO S Y . Affine formation maneuver control of multiagent systems[J]. IEEE Trans.on Automatic Control, 2018, 63 (12): 4140- 4155.
doi: 10.1109/TAC.2018.2798805
|
33 |
YANG Q K , CAO M , FANG H , et al. Constructing universally rigid tensegrity frameworks with application in multiagent formation control[J]. IEEE Trans.on Automatic Control, 2019, 64 (1): 381- 388.
doi: 10.1109/TAC.2018.2829687
|
34 |
刘树光, 王欢. 有人/无人机协同编队控制研究综述[J]. 飞行力学, 2022, 40 (5): 1- 8.
|
|
LIU S G , WANG H . Review on cooperative formation control for manned/unmanned aerial vehicles[J]. Flight Dynamics, 2022, 40 (5): 1- 8.
|
35 |
孟长, 胡磊, 魏婷婷. 约束条件下多运动体位置跟踪鲁棒控制算法研究[J]. 载人航天, 2013, 19 (5): 80- 84.
doi: 10.3969/j.issn.1674-5825.2013.05.014
|
|
MENG C , HU L , WEI T T . Study on robust position tracking algorithm of multi-vehicle systems under constraints[J]. Manned Spaceflight, 2013, 19 (5): 80- 84.
doi: 10.3969/j.issn.1674-5825.2013.05.014
|
36 |
OH K K , PARK M C , AHN H S . A survey of multi-agent formation control[J]. Automatica, 2015, 53 (C): 424- 440.
|