1 |
ZHENG Z X , GUO J , GILL E . Distributed onboard mission planning for multi-satellite systems[J]. Aerospace Science and Technology, 2019, 89, 111- 122.
doi: 10.1016/j.ast.2019.03.054
|
2 |
XIAO Y Y , ZHANG S Y , YANG P , et al. A two-stage flow-shop scheme for the multi-satellite observation and data-downlink scheduling problem considering weather uncertainties[J]. Reliability Engineering and System Safety, 2019, 188, 263- 275.
doi: 10.1016/j.ress.2019.03.016
|
3 |
VALICKA C G , GARCIA D , STAID A , et al. Mixed-integer programming models for optimal constellation scheduling given cloud cover uncertainty[J]. European Journal of Operational Research, 2019, 275 (2): 431- 445.
doi: 10.1016/j.ejor.2018.11.043
|
4 |
CHU X G , CHEN Y N , TAN Y J . An anytime branch and bound algorithm for agile earth observation satellite onboard scheduling[J]. Advances in Space Research, 2017, 60 (9): 2077- 2090.
doi: 10.1016/j.asr.2017.07.026
|
5 |
LIU Z B , FENG Z R , REN Z G . Route-reduction-based dynamic programming for large-scale satellite range scheduling problem[J]. Engineering Optimization, 2019, 51 (11): 1944- 1964.
doi: 10.1080/0305215X.2018.1558445
|
6 |
PELLERIN R , PERRIER N , BERTHAUT F . A survey of hybrid metaheuristics for the resource-constrained project scheduling problem[J]. European Journal of Operational Research, 2020, 280 (2): 395- 416.
doi: 10.1016/j.ejor.2019.01.063
|
7 |
HE L , LIU X L , LAPORTE G , et al. An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling[J]. Computers & Operations Research, 2018, 100, 12- 25.
|
8 |
WANG J J , HU X J , HE C . Reactive scheduling of multiple EOSs under cloud uncertainties: model and algorithms[J]. Journal of Systems Engineering and Electronics, 2021, 32 (1): 163- 177.
doi: 10.23919/JSEE.2021.000015
|
9 |
YAO F , LI J T , CHEN Y N , et al. Task allocation strategies for cooperative task planning of multi-autonomous satellite constellation[J]. Advances in Space Research, 2019, 63 (2): 1073- 1084.
doi: 10.1016/j.asr.2018.10.002
|
10 |
WU G H , LUO Q Z , DU X , et al. Ensemble of meta-heuristic and exact algorithm based on the divide and conquer framework for multi-satellite observation scheduling[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (5): 4396- 4408.
doi: 10.1109/TAES.2022.3160993
|
11 |
SUN H Q , XIA W , HU X X , et al. Earth observation satellite scheduling for emergency tasks[J]. Journal of Systems Engineering and Electronics, 2019, 30 (5): 931- 945.
doi: 10.21629/JSEE.2019.05.11
|
12 |
陈浩, 罗棕, 杜春, 等. 一种基于Bi-GRU的卫星对地观测任务可调度性预测方法[J]. 湖南大学学报(自然科学版), 2021, 48 (6): 88- 95.
|
|
CHEN H , LUO Z , DU C , et al. A prediction method for schedulability of satellite earth observation task based on Bi-GRU[J]. Journal of Hunan University (Natural Science Edition), 2021, 48 (6): 88- 95.
|
13 |
PENG S , CHEN H , DU C , et al. On board observation task planning for an autonomous earth observation satellite using long short-term memory[J]. IEEE Access, 2018, 6, 65118- 65129.
doi: 10.1109/ACCESS.2018.2877687
|
14 |
WANG H J , YANG Z , ZHOU W G , et al. Online scheduling of image satellites based on neural networks and deep reinforcement learning[J]. Chinese Journal of Aeronautics, 2019, 32 (4): 1011- 1019.
doi: 10.1016/j.cja.2018.12.018
|
15 |
WANG X , WU J , SHI Z , et al. Deep reinforcement learning-based autonomous mission planning method for high and low orbit multiple agile earth observing satellites[J]. Advances in Space Research, 2022, 70 (11): 3478- 3493.
doi: 10.1016/j.asr.2022.08.016
|
16 |
HUANG Y X , MU Z C , WU S F , et al. Revising the observation satellite scheduling problem based on deep reinforcement learning[J]. Remote Sensing, 2021, 13 (12): 2377.
doi: 10.3390/rs13122377
|
17 |
DU Y H , WANG T , XIN B , et al. A data-driven parallel scheduling approach for multiple agile earth observation satellites[J]. IEEE Trans.on Evolutionary Computation, 2019, 24 (4): 679- 693.
|
18 |
杜永浩, 邢立宁, 姚锋, 等. 航天器任务调度模型, 算法与通用求解技术综述[J]. 自动化学报, 2021, 47 (12): 2715- 2741.
|
|
DU Y H , XING L N , YAO F , et al. Survey on models, algorithms and general techniques for spacecraft mission scheduling[J]. Acta Automatica Sinica, 2021, 47 (12): 2715- 2741.
|
19 |
ZHU W M , HU X X , XIA W , et al. A two-phase genetic annealing method for integrated Earth observation satellite sche-duling problems[J]. Soft Computing, 2019, 23 (1): 181- 196.
doi: 10.1007/s00500-017-2889-8
|
20 |
ZHAO M , LI D C . A hierarchical parallel evolutionary algorithm of distributed and multi-threaded two-level structure for multi-satellite task planning[J]. International Journal of Automation and Control, 2020, 14 (5/6): 612- 633.
doi: 10.1504/IJAAC.2020.110075
|
21 |
LI Z L , LI X J . A multi-objective binary-encoding differential evolution algorithm for proactive scheduling of agile earth observation satellites[J]. Advances in Space Research, 2019, 63 (10): 3258- 3269.
doi: 10.1016/j.asr.2019.01.043
|
22 |
毛李恒, 邓清, 刘柔妮, 等. 针对多星多任务仿真调度的关键路径遗传算法[J]. 系统仿真学报, 2021, 33 (1): 205- 214.
|
|
MAO L H , DENG Q , LIU R N , et al. CPM-GA for multi-satellite and multi-task simulation scheduling[J]. Journal of System Simulation, 2021, 33 (1): 205- 214.
|
23 |
QI J T , GUO J J , WANG M M , et al. A cooperative autonomous scheduling approach for multiple earth observation satellites with intensive missions[J]. IEEE Access, 2021, 9, 61646- 61661.
doi: 10.1109/ACCESS.2021.3075059
|
24 |
李德仁, 丁霖, 邵振峰. 面向实时应用的遥感服务技术[J]. 遥感学报, 2021, 25 (1): 15- 24.
|
|
LI D R , DING L , SHAO Z F . Application-oriented real-time remote sensing service technology[J]. Journal of Remote Sensing, 2021, 25 (1): 15- 24.
|
25 |
WANG C , TANG J H , CHENG X H , et al. Distributed cooperative task planning algorithm for multiple satellites in delayed communication environment[J]. Journal of Systems Engineering and Electronics, 2016, 27 (3): 619- 633.
doi: 10.1109/JSEE.2016.00066
|
26 |
CHANG Z X , ZHOU Z B , YAO F , et al. Observation scheduling problem for AEOS with a comprehensive task clustering[J]. Journal of Systems Engineering and Electronics, 2021, 32 (2): 347- 364.
doi: 10.23919/JSEE.2021.000029
|
27 |
LI Y Q , WANG R X , YU L , et al. Satellite range scheduling with the priority constraint: an improved genetic algorithm using a station ID encoding method[J]. Chinese Journal of Aeronautics, 2015, 28 (3): 789- 803.
doi: 10.1016/j.cja.2015.04.012
|
28 |
ANGELOVA M , PENCHEVA T . Genetic operators'significance assessment in multi-population genetic algorithms[J]. International Journal of Metaheuristics, 2014, 3 (2): 162- 173.
doi: 10.1504/IJMHEUR.2014.063146
|
29 |
张佳唯. 面向航天侦察的任务优先级模型与算法研究[D]. 长沙: 国防科技大学, 2018.
|
|
ZHANG J W. Research on task priority model and algorithm for space reconnaissance[D]. Changsha: National University of Defense Technology, 2018.
|
30 |
于龙江, 吴限德, 毛一岚, 等. 分布式遥感卫星任务分配的合同网络算法[J]. 哈尔滨工程大学学报, 2020, 41 (7): 1059- 1065.
|
|
YU L J , WU X D , MAO Y L , et al. Task allocation for distributed remote sensing satellites based contract network algorithm[J]. Journal of Harbin Engineering University, 2020, 41 (7): 1059- 1065.
|