1 |
董磊, 刘嘉琛, 陈曦, 等. 面向适航符合性的智能航电系统认证研究进展[J]. 航空工程进展, 2023, 14 (3): 26- 40.
|
|
DONG L , LIU J C , CHEN X , et al. Research progress of AI-based avionics system certification for airworthiness compliance[J]. Advances in Aeronautical Science and Engineering, 2023, 14 (3): 26- 40.
|
2 |
卢新来, 杜子亮, 许赟. 航空人工智能概念与应用发展综述[J]. 航空学报, 2021, 42 (4): 251- 64.
|
|
LU X L , DU Z L , XU Y . Review on basic concept and applications for artificial intelligence in aviation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (4): 251- 264.
|
3 |
GABREAU C, PESQUET-POPESCU B, KAAKAI F, et al. AI for future skies: on-going standardization activities to build the next certification/approval framework for airborne and ground aeronautical products[C]//Proc. of the International Joint Conference on Artificial Intelligence, 2021.
|
4 |
SCHWEIGER A, ANNIGHOEFER B, REICH M, et al. Classification for avionics capabilities enabled by artificial intelligence[C]//Proc. of the IEEE/AIAA 40th Digital Avionics Systems Conference, 2021.
|
5 |
COFER D. Unintended behavior in learning-enabled systems: detecting the unknown unknowns[C]//Proc. of the IEEE/AIAA 40th Digital Avionics Systems Conference, 2021.
|
6 |
李超. 复杂装备事故非线性耦合特征WPD-MF分析[J]. 中国安全科学学报, 2019, 29 (12): 97- 102.
|
|
LI C . Research on non-linear coupling characteristics of complex materiel accident based on WPD-MF human-computer interaction safety analysis of airborne system from perspective of emergence[J]. China Safety Science Journal, 2019, 29 (12): 97- 102.
|
7 |
赵长啸, 李浩, 张伟, 等. 涌现性视角下机载系统人机交互安全性分析[J]. 中国安全科学学报, 2022, 32 (11): 113- 120.
|
|
ZHAO C X , LI H , ZHANG W , et al. Human-computer interaction safety analysis of airborne system from perspective of emergence[J]. China Safety Science Journal, 2022, 32 (11): 113- 120.
|
8 |
HOBBS K L, HEINER B K, BUSSE L, et al. Systems theoretic process analysis of a run time assured neural network control system[C]//Proc. of the AIAA SciTech Forum, 2023: 2664.
|
9 |
UTNE I B , ROKSETH B , VINNEM J E , et al. Towards supervisory risk control of autonomous ships[J]. Reliability Engineering & System Safety, 2020, 196, 106757.
|
10 |
ZHANG S J , TANG T , LIU J T . A hazard analysis approach for the SOTIF in intelligent railway driving assistance systems using STPA and complex network[J]. Applied Sciences, 2021, 11 (16): 7714.
doi: 10.3390/app11167714
|
11 |
谈东奎, 胡港君, 朱波, 等. 考虑预期功能安全的智能汽车自动紧急制动系统[J]. 汽车工程, 2022, 44 (6): 799- 808.
|
|
TAN D K , HU G J , ZHU B , et al. Intelligent vehicle autonomous emergency braking system considering safety of the intended functionality[J]. Automotive Engineering, 2022, 44 (6): 799- 808.
|
12 |
SI S L , YOU X Y , LIU H C , et al. DEMATEL technique: a systematic review of the state-of-the-art literature on methodologies and applications[J]. Mathematical Problems in Engineering, 2018, 2018, 3696457.
|
13 |
孙永河, 黄子航, 李阳. DEMATEL复杂因素分析算法最新进展综述[J]. 计算机科学与探索, 2022, 16 (3): 541- 551.
|
|
SUN Y H , HUANG Z H , LI Y . Review of state of the art on DEMATEL algorithms for complex factor analysis[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (3): 541- 551.
|
14 |
钟德明, 宫浩原, 孙睿. 一种准确识别损失场景的STPA[J]. 北京航空航天大学学报, 2023, 49 (2): 311- 323.
|
|
ZHONG D M , GONG H Y , SUN R . An STPA for accurately identifying loss scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (2): 311- 323.
|
15 |
ABDULAZIM A, ELBAHAEY M, MOHAMED A. Putting safety of intended functionality SOTIF into practice[R]. Pittsburgh: Society of Automotive Engineers, 2021: 3-6.
|
16 |
European Union Aviation Safety Agency. Concepts of design assurance for neural networks(CoDANN)[R]. Cologne: European Union Avition Safety Agency, 2020: 28-62.
|
17 |
Society of Automotive Engineers. Artificial intelligence in aeronautical systems: statement of concerns: AIR6988[R]. Pittsburgh: Society of Automotive Engineers, 2021: 29-43.
|
18 |
BUSTINCE H , BURILLO P . Vague sets are intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1996, 79 (3): 403- 405.
doi: 10.1016/0165-0114(95)00154-9
|
19 |
YAGER R R , ABBASOV A M . Pythagorean membership grades, complex numbers, and decision making[J]. International Journal of Intelligent Systems, 2013, 28 (5): 436- 452.
doi: 10.1002/int.21584
|
20 |
金珍. 基于毕达哥拉斯模糊集的多准则群决策理论与方法研究[D]. 南昌: 江西财经大学, 2019.
|
|
JIN Z. Research on multi-criteria group decision making theories and methods with pythagorean fuzzy sets[D]. Nanchang: Jiangxi University of Finance and Economics, 2019.
|
21 |
HUANG K , WANG M , LUO Y , et al. A safety analysis method based on hazard pattern mining for single pilot operations air-ground task collaboration in commercial aircraft[J]. Aerospace Systems, 2022, 6 (1): 25- 36.
|
22 |
许为, 陈勇, 董文俊, 等. 大型商用飞机单一飞行员驾驶的人因工程研究进展与展望[J]. 航空工程进展, 2022, 13 (1): 1- 18.
|
|
XU W , CHEN Y , DONG W J , et al. Human factors engineering research on single pilot operations for large commercial aircraft: progress and prospect[J]. Advances in Aeronautical Science and Engineering, 2022, 13 (1): 1- 18.
|
23 |
王淼, 肖刚, 王国庆. 单一飞行员驾驶模式技术[J]. 航空学报, 2020, 41 (4): 197- 215.
|
|
WANG M , XIAO G , WANG G Q . Single pilot operation mode technology[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (4): 197- 215.
|
24 |
DORMOY C , ANDRÉ J M , PAGANI A . A human factors'approach for multimodal collaboration with cognitive computing to create a human intelligent machine team: a review[J]. IOP Conference Series Materials Science and Engineering, 2021, 1024 (1): 012105.
doi: 10.1088/1757-899X/1024/1/012105
|
25 |
LIM Y , BASSIEN-CAPSA V , RAMASAMY S , et al. Commercial airline single-pilot operations: system design and pathways to certification[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32 (7): 4- 21.
doi: 10.1109/MAES.2017.160175
|
26 |
PONGSAKORNSATHIEN N, GARDI A, LIM Y, et al. Performance characterisation of wearable cardiac monitoring devices for aerospace applications[C]//Proc. of the IEEE 6th International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2019.
|
27 |
LIM Y, GARDI A, EZER N, et al. Eye-tracking sensors for adaptive aerospace human-machine interfaces and interactions[C]//Proc. of the IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2018.
|
28 |
肖国松, 刘嘉琛, 董磊, 等. 面向IMA通用系统管理的STPA安全性分析[J]. 中国安全科学学报, 2021, 31 (9): 8- 14.
|
|
XIAO G S , LIU J C , DONG L , et al. STPA safety analysis on IMA generic system management[J]. China Safety Science Journal, 2021, 31 (9): 8- 14.
|
29 |
SMITH C, DENNEY E, PAI G. Hazard contribution modes of machine learning components[C]//Proc. of the AAAI's Workshop on Artificial Intelligence Safety, 2020.
|
30 |
FORSBERG H, LINDÉN J, HJORTH J, et al. Challenges in using neural networks in safety-critical applications[C]//Proc. of the IEEE/AIAA 39th Digital Avionics Systems Conference, 2020.
|
31 |
STEIMERS A , SCHNEIDER M . Sources of risk of AI systems[J]. International Journal of Environmental Research and Public Health, 2022, 19 (6): 3641.
doi: 10.3390/ijerph19063641
|
32 |
BANERJEE D N, CHANDA S S. AI failures: a review of underlying issues[EB/OL]. [2022-12-20]. arxiv. org/abs/2008.04073.
|
33 |
SCOTT P J , YAMPOLSKIY R V . Classification schemas for artificial intelligence failures[J]. Delphi-Interdisciplinary Review of Emerging Technologies, 2020, 2 (4): 186- 199.
|
34 |
PONGSAKORNSATHIEN N , LIM Y , GARDI A , et al. Sensor networks for aerospace human-machine systems[J]. Sensors, 2019, 19 (16): 3465.
doi: 10.3390/s19163465
|
35 |
EASA. First usable guidance for Level 1 machine learning applications[R]. Cologne: European Union Aviation Safety Agency, 2021: 10-48.
|
36 |
DEEL. White paper machine learning in certified systems[R]. Toulouse: Dependable & Explainable Learning, 2021: 31-84.
|
37 |
F3269-17. Standard practice for methods to safely bound flight behavior of unmanned aircraft systems containing complex functions[S]. West Conshohocken: American Society of Testing Materials, 2017.
|