1 |
ZIMMERMANN N , MENDONCA F A C . The impact of human factors and maintenance documentation on aviation safety: an analysis of 15 years of accident data through the PEAR framework[J]. The Collegiate Aviation Review International, 2021, 39 (2)
doi: 10.22488/okstate.22.100230
|
2 |
BASTOLA D P . The relationship between leadership styles and aviation safety: a study of aviation industry[J]. Journal of Air Transport Studies, 2020, 11 (1): 71- 102.
doi: 10.38008/jats.v11i1.155
|
3 |
DE VOOGT A , KALAGHER H , SANTIAGO B , et al. Go-around accidents and general aviation safety[J]. Journal of Safety Research, 2022, 82, 323- 328.
doi: 10.1016/j.jsr.2022.06.008
|
4 |
BYRNES K P , RHOADES D L , WILLIAMS M J , et al. The effect of a safety crisis on safety culture and safety climate: the resilience of a flight training organization during COVID-19[J]. Transport Policy, 2022, 117, 181- 191.
doi: 10.1016/j.tranpol.2021.11.009
|
5 |
LEDERER P J , NAMBIMADOM R S . Airline network design[J]. Operations Research, 1998, 46 (6): 785- 804.
doi: 10.1287/opre.46.6.785
|
6 |
ZHANG X G , MAHADEVAN S . Ensemble machine learning models for aviation incident risk prediction[J]. Decision Support Systems, 2019, 116, 48- 63.
doi: 10.1016/j.dss.2018.10.009
|
7 |
ZHANG X G , MAHADEVAN S . Bayesian network modeling of accident investigation reports for aviation safety assessment[J]. Reliability Engineering & System Safety, 2021, 209, 107371.
|
8 |
胡召音. 灰色理论及其应用研究[J]. 武汉理工大学学报(交通科学与工程版), 2003, 27 (3): 405- 407.
doi: 10.3963/j.issn.2095-3844.2003.03.036
|
|
HU Z Y . Gray theories and its application[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2003, 27 (3): 405- 407.
doi: 10.3963/j.issn.2095-3844.2003.03.036
|
9 |
CHEN C C , CHEN J , LIN P C . Identification of significant threats and errors affecting aviation safety in Taiwan using the analytical hierarchy process[J]. Journal of Air Transport Ma-nagement, 2009, 15 (5): 261- 263.
|
10 |
ALE B , VAN-GULIJK C , HANEA A , et al. Towards BBN based risk modelling of process plants[J]. Safety Science, 2014, 69, 48- 56.
doi: 10.1016/j.ssci.2013.12.007
|
11 |
ANCEL E , SHIH A T , JONES S M , et al. Predictive safety analytics: inferring aviation accident shaping factors and causation[J]. Journal of Risk Research, 2015, 18 (4): 428- 451.
doi: 10.1080/13669877.2014.896402
|
12 |
ROSE R L , PURANIK T G , MAVRIS D N . Natural language processing based method for clustering and analysis of aviation safety narratives[J]. Aerospace, 2020, 7 (10): 143.
doi: 10.3390/aerospace7100143
|
13 |
XU B , WU Q , XI C , et al. Recognition of the fatigue status of pilots using BF-PSO optimized multi-class GP classification with sEMG signals[J]. Reliability Engineering & System Safety, 2020, 199, 106930.
|
14 |
ZHOU D , ZHUANG X , ZUO H F , et al. A model fusion strategy for identifying aircraft risk using CNN and Att-BiLSTM[J]. Reliability Engineering & System Safety, 2022, 228, 108750.
|
15 |
余稼洋, 郭建胜, 周楚涵, 等. 基于Bow-tie-DT-FTA的航空安全事故预防措施决策分析[J]. 火力与指挥控制, 2022, 47 (8): 158- 164.
doi: 10.3969/j.issn.1002-0640.2022.08.026
|
|
YU J Y , GUO J S , ZHOU C H , et al. Decision-making analysis of preventive measures for aviation safety accidents based on Bow-tie-DT-FTA[J]. Fire Control & Command Control, 2022, 47 (8): 158- 164.
doi: 10.3969/j.issn.1002-0640.2022.08.026
|
16 |
LUXHØJ J T , CHOOPAVANG A , ARENDT D N . Risk assessment of organizational factors in aviation systems[J]. Air Traffic Control Quarterly, 2001, 9 (3): 135- 174.
doi: 10.2514/atcq.9.3.135
|
17 |
TAMASI G , DEMICHELA M . Risk evaluation techniques for civil aviation security[J]. Reliability Engineering & System Safety, 2011, 96 (8): 892- 899.
|
18 |
WILKE S , MAJUMDAR A , OCHIENG W Y . A framework for assessing the quality of aviation safety databases[J]. Safety Science, 2014, 63, 133- 145.
doi: 10.1016/j.ssci.2013.11.005
|
19 |
徐吉辉, 王晓琳, 王瑛, 等. 基于证据理论的Bow-tie航空风险评估方法及应用[J]. 火力与指挥控制, 2019, 44 (10): 1- 7.
doi: 10.3969/j.issn.1002-0640.2019.10.001
|
|
XU J H , WANG X L , WANG Y , et al. Research on method and application of Bow-tie analysis based on D-S evidence theory[J]. Fire Control & Command Control, 2019, 44 (10): 1- 7.
doi: 10.3969/j.issn.1002-0640.2019.10.001
|
20 |
MIYAMOTO A , BENDARKAR M V , MAVRIS D N . Natural language processing of aviation safety reports to identify inefficient operational patterns[J]. Aerospace, 2022, 9 (8): 450.
doi: 10.3390/aerospace9080450
|
21 |
鲍晗, 左洪福, 蔡景, 等. 基于概率风险分析的航空发动机控制系统故障风险评估[J]. 四川兵工学报, 2018, 39 (10): 38- 43.
|
|
BAO H , ZUO H F , CAI J , et al. Risk assessment of aeroengine control system based on probability risk analysis[J]. Journal of Ordnance Equipment Engineerin, 2018, 39 (10): 38- 43.
|
22 |
STAMATELATOS M, DEZFULI H, APOSTOLAKIS G, et al. Probabilistic risk assessment procedures guide for NASA ma-nagers and practitioners[R]. Hanover MD: NASA, 2011.
|
23 |
CUI L J , ZHANG J K , REN B , et al. Research on a new aviation safety index and its solution under uncertainty conditions[J]. Safety Science, 2018, 107, 55- 61.
doi: 10.1016/j.ssci.2018.04.001
|
24 |
KHAN B , KHAN F , VEITCH B . A dynamic Bayesian network model for ship-ice collision risk in the Arctic waters[J]. Safety Science, 2020, 130, 104858.
doi: 10.1016/j.ssci.2020.104858
|
25 |
KAPTAN M , UGURLU O , WANG J . The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents[J]. Reliability Engineering & System Safety, 2021, 215, 107886.
|
26 |
王岩韬, 刘毓. 基于复杂网络的航班运行风险传播分析[J]. 交通运输系统工程与信息, 2020, 20 (1): 198- 205.
|
|
WANG Y T , LIU Y . Flight operation risk propagation based on complex network[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (1): 198- 205.
|
27 |
MA X X , DENG W Y , QIAO W L , et al. A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN[J]. Reliability Engineering & System Safety, 2022, 221, 108334.
|
28 |
Flight Safety Foundation. Aviation safety network[EB/OL]. [2023-03-05]. https://aviation-safety.net/.
|
29 |
WU M Y , DAI W , LU Z Y , et al. The method for risk evaluation in assembly process based on the discrete-time SIRS epidemic model and information entropy[J]. Entropy, 2019, 21 (11): 1029.
doi: 10.3390/e21111029
|
30 |
LV C C , YUAN Z W , SI S B , et al. Cascading failure in networks with dynamical behavior against multi-node removal[J]. Chaos, Solitons & Fractals, 2022, 160, 112270.
|
31 |
STARR J R A W . Integrating fatigue management with safety management systems for commercial flightcrew operations[J]. International Journal of Aviation, Aeronautics, and Aerospace, 2017, 4 (1)
doi: 10.15394/ijaaa.2017.1143
|