系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (6): 1986-1994.doi: 10.12305/j.issn.1001-506X.2024.06.16
• 系统工程 • 上一篇
吴嘉俊, 苏春, 张玉茹
收稿日期:
2023-06-03
出版日期:
2024-05-25
发布日期:
2024-06-04
通讯作者:
苏春
作者简介:
吴嘉俊 (1999—), 男, 硕士研究生, 主要研究方向为可靠性工程基金资助:
Jiajun WU, Chun SU, Yuru ZHANG
Received:
2023-06-03
Online:
2024-05-25
Published:
2024-06-04
Contact:
Chun SU
摘要:
剩余使用寿命(remaining useful life, RUL)预测是产品故障预测与健康管理的重要内容。传统长短期记忆(long short-term memory, LSTM) 网络无法主动选择关键特征、难以高效提取大数据所蕴含的退化信息。提出一种基于改进LSTM网络的RUL预测方法, 采用随机森林(random forest, RF) 算法筛选输入特征, 以主动选取关键特征; 采用双重自注意力机制分别从特征维度和时间维度完成权重自适应分配, 使模型在学习过程中关注主要特征和历史时间点; 通过融合统计特征, 以提高RUL预测精度。以航空发动机数据集为例完成案例分析, 验证方法有效性。结果表明, 所提方法能有效提高基于复杂数据集的RUL预测精度。
中图分类号:
吴嘉俊, 苏春, 张玉茹. 基于双重自注意力机制和长短时记忆网络的剩余寿命预测[J]. 系统工程与电子技术, 2024, 46(6): 1986-1994.
Jiajun WU, Chun SU, Yuru ZHANG. Remaining useful life prediction based on double self-attention mechanism and long short-term memory network[J]. Systems Engineering and Electronics, 2024, 46(6): 1986-1994.
表4
消融实验的数据结果"
方法 | FD001 | FD004 | |||||||
RMSE | STD | Score | STD | RMSE | STD | Score | STD | ||
LSTM | 13.21 | 0.51 | 306.06 | 54.58 | 19.46 | 1.05 | 3 786.78 | 1 691.87 | |
RF+LSTM | 13.20 | 0.33 | 306.42 | 45.93 | 19.14 | 0.56 | 3 658.44 | 1 498.73 | |
RF+Feats+LSTM | 12.52 | 0.57 | 253.09 | 26.14 | 18.81 | 0.45 | 2 381.83 | 468.51 | |
本文方法 | 12.357 | 0.31 | 269.28 | 22.76 | 18.27 | 0.44 | 1 793.52 | 171.05 |
表5
不同方法的RUL预测对比"
方法 | 年份 | FD001 | FD002 | FD003 | FD004 | |||||||
RMSE | Score | RMSE | Score | RMSE | Score | RMSE | Score | |||||
MLP[ | 2017 | 16.78 | 561 | 28.78 | 14 027 | 18.47 | 480 | 30.96 | 10 444 | |||
DCNN[ | 2018 | 12.61 | 273 | 22.36 | 10 412 | 12.64 | 284 | 23.31 | 12 466 | |||
RNN[ | 2018 | 13.44 | 339 | 24.03 | 14 245 | 13.36 | 316 | 24.02 | 13 931 | |||
DLSTM[ | 2020 | 14.57 | — | 23.20 | — | 14.92 | — | 28.72 | — | |||
VAE+LSTM[ | 2020 | 15.88 | 322 | 25.78 | 4 990 | 14.29 | 309 | 23.93 | 4 720 | |||
CNN+Bi-LSTM[ | 2020 | 10.74 | — | 15.20 | — | 13.85 | — | 18.60 | — | |||
MCLSTM[ | 2021 | 13.71 | 315 | — | — | — | — | 23.81 | 4 826 | |||
Attention+LSTM[ | 2021 | 14.54 | 322 | — | — | — | — | 27.08 | 5 649 | |||
Multi-attention+TCN[ | 2022 | 13.25 | 235 | 19.57 | 1 655 | 13.43 | 239 | 21.69 | 2 415 | |||
Double attention-based architecture[ | 2022 | 12.25 | 198 | 17.08 | 1 575 | 13.39 | 290 | 19.86 | 1 741 | |||
Dual attention+GRU[ | 2023 | 11.77 | — | 16.09 | — | 11.66 | — | 20.10 | — | |||
MMoE+BiGRU[ | 2022 | 13.22 | — | 18.26 | — | 13.79 | — | 18.38 | — | |||
RCNN+ABi-LSTM[ | 2023 | 12.98 | 258 | 19.16 | 2 980 | 13.24 | 246 | 22.29 | 3 795 | |||
本文方法 | 2023 | 12.35 | 269 | 15.13 | 924 | 13.24 | 487 | 18.27 | 1 794 |
1 | OMSHI E M , GRALL A . Replacement and imperfect repair of deteriorating system: study of a CBM policy and impact of repair efficiency[J]. Reliability Engineering & System Safety, 2021, 215, 107905. |
2 |
LEI Y G , LI N P , GUO L , et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104, 799- 834.
doi: 10.1016/j.ymssp.2017.11.016 |
3 | NIETO P J G , GARCIA-GONZALO E , LASHERAS F S , et al. Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability[J]. Reliability Engineering & System Safety, 2015, 138, 219- 231. |
4 |
SCHONLAU M , ZOU R Y . The random forest algorithm for statistical learning[J]. The Stata Journal, 2020, 20 (1): 3- 29.
doi: 10.1177/1536867X20909688 |
5 | LIN M Q , YOU Y Q , WANG W , et al. Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification[J]. Reliability Engineering & System Safety, 2023, 230, 108978. |
6 | XU Z Y , SALEH J H . Machine learning for reliability engineering and safety applications: review of current status and future opportunities[J]. Reliability Engineering & System Safety, 2021, 211, 107530. |
7 | LI X , DING Q , SUN J Q . Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172, 1- 11. |
8 |
ZHU J , CHEN N , PENG W W . Estimation of bearing remaining useful life based on multiscale convolutional neural network[J]. IEEE Trans.on Industrial Electronics, 2019, 66 (4): 3208- 3216.
doi: 10.1109/TIE.2018.2844856 |
9 | SHANG Z W , ZHANG B R , LI W X , et al. Machine remaining life prediction based on multi-layer self-attention and temporal convolution network[J]. Complex & Intelligent Systems, 2022, 8 (2): 1409- 1424. |
10 |
ZHANG J J , WANG P , YAN R Q , et al. Long short-term memory for machine remaining life prediction[J]. Journal of Manufacturing Systems, 2018, 48, 78- 86.
doi: 10.1016/j.jmsy.2018.05.011 |
11 |
SU C , LI L , WEN Z J . Remaining useful life prediction via a variational autoencoder and a time-window-based sequence neural network[J]. Quality and Reliability Engineering International, 2020, 36 (5): 1639- 1656.
doi: 10.1002/qre.2651 |
12 | 李京峰, 陈云翔, 项华春, 等. 基于LSTM-DBN的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2020, 42 (7): 1637- 1644. |
LI J F , CHEN Y X , XIANG H C , et al. Remaining useful life prediction for aero-engine based on the similarity of degradation characteristics[J]. Systems Engineering and Electronics, 2020, 42 (7): 1637- 1644. | |
13 |
CHEN Z H , WU M , ZHAO R , et al. Machine remaining useful life prediction via an attention-based deep learning approach[J]. IEEE Trans.on Industrial Electronics, 2021, 68 (3): 2521- 2531.
doi: 10.1109/TIE.2020.2972443 |
14 | ZHANG Y , XIN Y Q , LIU Z W , et al. Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE[J]. Reliability Engineering & System Safety, 2022, 220, 108263. |
15 | 闫啸家, 梁伟阁, 张钢, 等. 基于RCNN-ABiLSTM的机械设备剩余寿命预测方法[J]. 系统工程与电子技术, 2023, 45 (3): 931- 940. |
YAN X J , LIANG W G , ZHANG G , et al. Prediction method for mechanical equipment based on RCNN-ABiLSTM[J]. Systems Engineering and Electronics, 2023, 45 (3): 931- 940. | |
16 |
MA X L , TAO Z M , WANG Y H , et al. Long short-term memory neural for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54, 187- 197.
doi: 10.1016/j.trc.2015.03.014 |
17 |
WANG H , PENG M J , MIAO Z , et al. Remaining useful life prediction techniques for electric valves based on convolution auto encoder and long short term memory[J]. ISA Transactions, 2021, 108, 333- 342.
doi: 10.1016/j.isatra.2020.08.031 |
18 |
GU L D , ZHENG R , ZHOU Y F , et al. Remaining useful life prediction using composite health index and hybrid LSTM-SVR model[J]. Quality and Reliability Engineering International, 2022, 38 (7): 3559- 3578.
doi: 10.1002/qre.3151 |
19 |
DU W B , WANG Y L , QIAO Y . Recurrent spatial-temporal attention network for action recognition in videos[J]. IEEE Trans.on Image Processing, 2018, 27 (3): 1347- 1360.
doi: 10.1109/TIP.2017.2778563 |
20 | PAN T Y , CHEN J L , YE Z S , et al. A multi-head attention network with adaptive meta-transfer learning for RUL prediction of rocket engines[J]. Reliability Engineering & System Safety, 2022, 225, 108610. |
21 | LIU L , SONG X , ZHOU Z T . Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture[J]. Reliability Engineering & System Safety, 2022, 221, 108330. |
22 |
KHELIF R , CHEBEL-MORELLO B , MALINOWSKI S , et al. Direct remaining useful life estimation based on support vector regression[J]. IEEE Trans.on Industrial Electronics, 2017, 64 (3): 2276- 2285.
doi: 10.1109/TIE.2016.2623260 |
23 |
汪千程, 苏春, 文泽军. 基于协整分析的风力机多工况监测与故障诊断[J]. 中国机械工程, 2022, 33 (13): 1596- 1603.
doi: 10.3969/j.issn.1004-132X.2022.13.010 |
WANG Q C , SU C , WEN Z J . Multi-condition monitoring and fault diagnosis of wind turbines based on cointegration analysis[J]. China Mechanical Engineering, 2022, 33 (13): 1596- 1603.
doi: 10.3969/j.issn.1004-132X.2022.13.010 |
|
24 | 张紫嫣, 卢文科, 左锋, 等. 基于分段线性插值法的应变片式扭矩传感器的温度补偿[J]. 电子测量技术, 2022, 45 (8): 143- 147. |
ZHANG Z Y , LU W K , ZUO F , et al. Temperature compensation of strain gauge torque sensor based on piecewise linear interpolation method[J]. Electronic Measurement Technology, 2022, 45 (8): 143- 147. | |
25 |
CHENG Y J , ZENG J Y , WANG Z L , et al. A health state-related ensemble deep learning method for aircraft engine remaining useful life prediction[J]. Applied Soft Computing, 2023, 135, 110041.
doi: 10.1016/j.asoc.2023.110041 |
26 |
GONG R , LI J X , WANG C L . Remaining useful life prediction based on multisensor fusion and attention TCN-BiGRU model[J]. IEEE Sensors Journal, 2022, 22 (21): 21101- 21110.
doi: 10.1109/JSEN.2022.3208753 |
27 | SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//Proc. of the International Conference on Prognostics and Health Management, 2008: 1-9. |
28 |
LI H , ZHAO W , ZHANG Y X , et al. Remaining useful life prediction using multi-scale deep convolutional neural network[J]. Applied Soft Computing, 2020, 89, 106113.
doi: 10.1016/j.asoc.2020.106113 |
29 |
ZHANG C , LIM P , QIN A K , et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Trans.on Neural Networks and Learning Systems, 2017, 28 (10): 2306- 2318.
doi: 10.1109/TNNLS.2016.2582798 |
30 |
XIA M , ZHENG X , IMRAN M , et al. Data-driven prognosis method using hybrid deep recurrent neural network[J]. Applied Soft Computing, 2020, 93, 106351.
doi: 10.1016/j.asoc.2020.106351 |
31 | REMADNA I, TERRISSA S L, ZEMOURI R, et al. Leveraging the power of the combination of CNN and bi-directional LSTM networks for aircraft engine RUL estimation[C]//Proc. of the Prognostics and Health Management Conference, 2020: 116-121. |
32 | XIANG S , QIN Y , LUO J , et al. Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction[J]. Reliability Engineering & System Safety, 2021, 216, 107927. |
33 | LI Y F , CHEN Y F , SHAO H N , et al. A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units[J]. Reliability Engineering & System Safety, 2023, 239, 109514. |
[1] | 李海, 田众, 钱君. 基于ECOC平衡随机森林的雷达降水粒子分类[J]. 系统工程与电子技术, 2024, 46(5): 1599-1606. |
[2] | 程绍驰, 游光荣. 基于改进随机森林算法的评估指标精简方法研究[J]. 系统工程与电子技术, 2023, 45(7): 2108-2113. |
[3] | 任博, 岳珠峰, 司勇, 崔利杰, 曾航. 基于随机森林的航空安全因果预测新方法[J]. 系统工程与电子技术, 2023, 45(3): 762-768. |
[4] | 闫啸家, 梁伟阁, 张钢, 佘博, 田福庆. 基于RCNN-ABiLSTM的机械设备剩余寿命预测方法[J]. 系统工程与电子技术, 2023, 45(3): 931-940. |
[5] | 宋波涛, 许广亮. 基于LSTM与1DCNN的导弹轨迹预测方法[J]. 系统工程与电子技术, 2023, 45(2): 504-512. |
[6] | 孙隽丰, 李成海, 曹波. 基于TCN-BiLSTM的网络安全态势预测[J]. 系统工程与电子技术, 2023, 45(11): 3671-3679. |
[7] | 方坤, 李晓辉, 樊韬. 基于随机森林权重补偿的无人机高精度定位算法[J]. 系统工程与电子技术, 2023, 45(1): 202-209. |
[8] | 李明杰, 周池军, 雷虎民, 邵雷, 骆长鑫. 基于控制参数估计的再入滑翔目标智能轨迹预测算法[J]. 系统工程与电子技术, 2023, 45(1): 221-233. |
[9] | 方伟, 王玉, 闫文君, 林冲. 基于神经网络的符号化飞行动作识别[J]. 系统工程与电子技术, 2022, 44(3): 737-745. |
[10] | 蔺瑞管, 王华伟, 车畅畅, 倪晓梅, 熊明兰. 基于LSTM分类器的航空发动机预测性维护模型[J]. 系统工程与电子技术, 2022, 44(3): 1052-1059. |
[11] | 孙世岩, 张钢, 梁伟阁, 佘博, 田福庆. 基于时间序列数据扩增和BLSTM的滚动轴承剩余寿命预测方法[J]. 系统工程与电子技术, 2022, 44(3): 1060-1068. |
[12] | 韩亚娟, 章露露, 雷小虎. 基于改进FDOD度量的航空发动机健康状况评估[J]. 系统工程与电子技术, 2022, 44(11): 3579-3586. |
[13] | 陈云翔, 饶益, 蔡忠义, 王泽洲. 基于改进相似性的装备部件剩余寿命预测及经济性储备策略[J]. 系统工程与电子技术, 2021, 43(9): 2688-2696. |
[14] | 谢磊, 丁达理, 魏政磊, 汤安迪, 张鹏. AdaBoost-PSO-LSTM网络实时预测机动轨迹[J]. 系统工程与电子技术, 2021, 43(6): 1651-1658. |
[15] | 王泽洲, 陈云翔, 蔡忠义, 项华春, 王莉莉. 基于比例关系加速退化建模的设备剩余寿命在线预测[J]. 系统工程与电子技术, 2021, 43(2): 584-592. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||