系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (6): 1892-1898.doi: 10.12305/j.issn.1001-506X.2024.06.07

• 电子技术 • 上一篇    

基于线谱特征保持的单枚浮标多目标信号分离算法

李大卫1,*, 吴明辉1, 单志超1, 宋广明1,2, 蔡召鹏2   

  1. 1. 海军航空大学航空作战勤务学院, 山东 烟台 264001
    2. 中国人民解放军92635部队, 山东 青岛 266000
  • 收稿日期:2023-04-01 出版日期:2024-05-25 发布日期:2024-06-04
  • 通讯作者: 李大卫
  • 作者简介:李大卫 (1983—), 男, 副教授, 博士, 主要研究方向为反潜信息处理
    吴明辉 (1981—), 男, 副教授, 博士, 主要研究方向为反潜信息处理
    单志超 (1979—), 男, 副教授, 博士, 主要研究方向为反潜信息处理
    宋广明 (1989—), 男, 讲师, 本科, 主要研究方向为航空反潜信息处理
    蔡召鹏 (1989—), 男, 工程师, 本科, 主要研究方向为航空反潜信息处理
  • 基金资助:
    海军航空大学文职基金(I32102003)

Multi-target signal separation algorithm for single buoy based on line spectrum feature preservation

Dawei LI1,*, Minghui WU1, Zhichao SHAN1, Guangming SONG1,2, Zhaopeng CAI2   

  1. 1. School of Aviation Operations and Support, Naval Aviation University, Yantai 264001, China
    2. Unit 92635 of PLA, Qingdao 266000, China
  • Received:2023-04-01 Online:2024-05-25 Published:2024-06-04
  • Contact: Dawei LI

摘要:

针对单枚被动全向声纳浮标多目标信号的分离问题, 提出联合非负矩阵分解(non-negative matrix factorization, NMF)和快速独立成分分析(fast independent component analysis, FastICA)的多目标信号盲分离算法。首先, 基于空间与谱间相关性优化NMF算法, 以增强NMF算法对水声信号调制线谱特征的适应性, 提高对线谱的保持优势; 然后, 以NMF基矩阵优势结合FastICA算法实现水声多目标信号的盲分离。仿真信号实验结果表明, 所提算法取得了较高的信号分离精度, 可以较好地保持信号的调制特征, 同时对分离信号进行了一定的降噪增强, 更好地保证了后续目标识别的特征支撑。

关键词: 被动全向声纳浮标, 多目标信号盲分离, 非负矩阵分解, 快速独立成分分析, 线谱特征保持

Abstract:

To solve the problem of multi-target signal separation of a single passive omnidirectional sonar buoy, a multi-target blind signal separation algorithm combining non-negative matrix factorization (NMF) and fast independent component analysis (FastICA) is proposed. Firstly, the proposed algorithm optimizes the NMF algorithm based on the correlation between space and spectrum to enhance the adaptability of the NMF algorithm to the characteristics of underwater acoustic signal modulation line spectrum and improve the advantage of maintaining line spectrum. Then, the blind separation of underwater acoustic multi-target signals is realized by the FastICA algorithm with NMF basis matrix advantage. Experimental results of simulated signals show that the proposed algorithm achieves high signal separation accuracy, can better maintain the modulation characteristics of the signal, and enhance the noise of the separated signal to a certain extent at the same time, which better ensures the feature support of subsequent target recognition.

Key words: passive omnidirectional sonar buoy, blind separation of multi-target signals, non-negative matrix factorization (NMF), fast independent component analysis (FastICA), line spectrum feature preservation

中图分类号: