1 |
HASSAN N , HUANG C W , YUEN C , et al. Dense small sa-tellite networks for modern terrestrial communication systems: benefits, infrastructure, and technologies[J]. IEEE Wireless Communications, 2020, 27 (5): 96- 103.
doi: 10.1109/MWC.001.1900394
|
2 |
蒋长林, 李清, 王羽, 等. 天地一体化网络关键技术研究综述[J]. 软件学报, 2023, 36 (6): 1- 22.
|
|
JIANG C L , LI Q , WANG Y , et al. Survey on key technologies in space-ground integrated network[J]. Journal of Software, 2023, 36 (6): 1- 22.
|
3 |
陈山枝. 关于低轨卫星通信的分析及我国的发展建议[J]. 电信科学, 2020, 36 (6): 1- 13.
|
|
CHEN S Z . Analysis of LEO satellite communication and suggestions for its development strategy in China[J]. Telecommunications Science, 2020, 36 (6): 1- 13.
|
4 |
李峰, 禹航, 丁睿, 等. 我国空间互联网星座系统发展战略研究[J]. 中国工程科学, 2021, 23 (4): 137- 144.
|
|
LI F , YU H , DING R , et al. Development strategy of space internet constellation system in China[J]. Strategic Study of CAE, 2021, 23 (4): 137- 144.
|
5 |
CHAUDHRY A U , YANIKOMEROGLU H . Laser intersatellite links in a starlink constellation: a classification and analysis[J]. IEEE Vehicular Technology Magazine, 2021, 16 (2): 48- 56.
doi: 10.1109/MVT.2021.3063706
|
6 |
陈全, 杨磊, 郭剑鸣, 等. 低轨巨型星座网络: 组网技术与研究现状[J]. 通信学报, 2022, 43 (5): 177- 189.
|
|
CHEN Q , YANG L , GUO J M , et al. LEO mega-constellation network: networking technologies and state of the art[J]. Journal on Communications, 2022, 43 (5): 177- 189.
|
7 |
LIU W S, WU Q, LAI Z Q, et al. Enabling ubiquitous and efficient data delivery by LEO satellites and ground station networks[C]//Proc. of the IEEE Global Communications Conference, 2022: 687-692.
|
8 |
OREN M, MICHAEL S. Advanced routing algorithms for low orbit satellite constellations[C]//Proc. of the IEEE International Conference on Communications, 2021.
|
9 |
ALI I , AL-DHAHIR N , HERSHEY J E . Predicting the visibi-lity of LEO satellites[J]. IEEE Trans.on Aerospace and Electronic Systems, 1999, 35 (4): 1183- 1190.
doi: 10.1109/7.805436
|
10 |
PAPAPETROU E , KARAPANTAZIS S , DIMITRIADIS G , et al. Satellite handover techniques for LEO networks[J]. International Journal of Satellite Communications and Networking, 2004, 22 (2): 231- 245.
doi: 10.1002/sat.783
|
11 |
SHI L L, YANG F, WU W J, et al. Load balancing and remaining visible time based handover algorithm for LEO satellite network[C]//Proc. of the IEEE 8th International Conference on Computer and Communications, 2022: 391-395.
|
12 |
GU Q H, XU Z, WANG X T. Access algorithm in software-defined satellite network[M]//LI B, LI C L, YANG M, ed. IoT as a service. Cham: Springer International Publishing, 2021.
|
13 |
XU H H , LI D S , LIU M L , et al. QoE-driven intelligent handover for user-centric mobile satellite networks[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (9): 10127- 10139.
doi: 10.1109/TVT.2020.3000908
|
14 |
ZHANG S B, LIU A J, LIANG X H. A multi-objective satellite handover strategy based on entropy in LEO satellite communications[C]//Proc. of the IEEE 6th International Conference on Computer and Communications, 2020: 723-728.
|
15 |
WU Z F , JIN F L , LUO J X , et al. A graph-based satellite handover framework for LEO satellite communication networks[J]. IEEE Communications Letters, 2016, 20 (8): 1547- 1550.
doi: 10.1109/LCOMM.2016.2569099
|
16 |
FENG L , LIU Y F , WU L , et al. A satellite handover strategy based on MIMO technology in LEO satellite networks[J]. IEEE Communications Letters, 2020, 24 (7): 1505- 1509.
doi: 10.1109/LCOMM.2020.2988043
|
17 |
胡欣, 宋航宇, 刘帅军, 等. 基于时间演进图的LEO星间切换实时预测及更新方法[J]. 通信学报, 2018, 39 (10): 43- 51.
|
|
HU X , SONG H Y , LIU S J , et al. Real-time prediction and updating method for LEO satellite handover based on time evolving graph[J]. Journal on Communications, 2018, 39 (10): 43- 51.
|
18 |
ZHANG S B , LIU A J , HAN C , et al. A network-flows-based satellite handover strategy for LEO satellite networks[J]. IEEE Wireless Communications Letters, 2021, 10 (12): 2669- 2673.
doi: 10.1109/LWC.2021.3111680
|
19 |
WU Y , HU G Y , JIN F L , et al. A satellite handover strategy based on the potential game in LEO satellite networks[J]. IEEE Access, 2019, 7, 133641- 133652.
doi: 10.1109/ACCESS.2019.2941217
|
20 |
CAO Y , LIEN S Y , LIANG Y C . Deep reinforcement learning for multi-user access control in non-terrestrial networks[J]. IEEE Trans.on Communications, 2021, 69 (3): 1605- 1619.
doi: 10.1109/TCOMM.2020.3041347
|
21 |
WANG J, MU W Q, LIU Y N, et al. Deep reinforcement learning-based satellite handover scheme for satellite communications[C]//Proc. of the 13th International Conference on Wireless Communications and Signal Processing, 2021.
|
22 |
LIN Z T, LI H W, LI Y J, et al. Systematic utilization analysis of mega-constellation networks[C]//Proc. of the International Wireless Communications and Mobile Computing, 2022: 1317-1322.
|
23 |
CHEN Q , CHEN X Q , YANG L , et al. A distributed congestion avoidance routing algorithm in mega-constellation network with multi-gateway[J]. Acta Astronautica, 2019, 162, 376- 387.
doi: 10.1016/j.actaastro.2019.05.051
|
24 |
LIU L X, LI H W, LI Y J, et al. Geographic low-earth-orbit networking without QoS bottlenecks from infrastructure mobi-lity[C]//Proc. of the IEEE/ACM 30th International Symposium on Quality of Service, 2022.
|
25 |
CHEN Q , GIAMBENE G , YANG L , et al. Analysis of inter-satellite link paths for LEO mega-constellation networks[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (3): 2743- 2755.
doi: 10.1109/TVT.2021.3058126
|
26 |
徐晓帆, 王妮炜, 高璎园, 等. 陆海空天一体化信息网络发展研究[J]. 中国工程科学, 2021, 23 (2): 39- 45.
|
|
XU X F , WANG N W , GAO Y Y , et al. Development of land-sea-air-space integrated information network[J]. Strategic Study of CAE, 2021, 23 (2): 39- 45.
|
27 |
NILS P, INIGO P, EDWARD F, et al. An updated comparison of four low earth orbit satellite constellation systems to provide global broadband[C]//Proc. of the IEEE International Conference on Communications Workshops, 2021.
|
28 |
刘琦, 张弫, 饶建兵, 等. 低轨星座构型保持研究现状与分析[J]. 系统工程与电子技术, 2023, 45 (8): 2562- 2569.
|
|
LIU Q , ZHANG Z , RAO J B , et al. Research status and ana-lysis of configuration maintenance of LEO constellation[J]. Systems Engineering and Electronics, 2023, 45 (8): 2562- 2569.
|
29 |
AIZAZ U C , HALIM Y . Free space optics for next-generation satellite networks[J]. IEEE Consumer Electronics Magazine, 2021, 10 (6): 21- 31.
doi: 10.1109/MCE.2020.3029772
|
30 |
BHATTACHERJEE D, SINGLA A. Network topology design at 27, 000 km/hour[C]//Proc. of the 15th International Conference on Emerging Networking Experiments and Technologies, 2019: 341-354.
|
31 |
WANG W , ZHAO Y L , ZHANG Y J , et al. Intersatellite laser link planning for reliable topology design in optical satellite networks: a networking perspective[J]. IEEE Trans.on Network and Service Management, 2022, 19 (3): 2612- 2624.
doi: 10.1109/TNSM.2022.3168148
|
32 |
SpaceX. SpaceX non-geostationary satellite system: attachment A[EB/OL]. [2022-09-08]. http://licensing.fcc.gov/myibfs/forwardtopublictabaction.do?filenumber=SATMOD2020041700037.
|
33 |
WorldBank. Number of people using the Internet(2020)[EB/OL]. [2022-05-26]. https://ourworldindata.org/grapher/number-of-internet-users.
|