系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (5): 1745-1755.doi: 10.12305/j.issn.1001-506X.2024.05.27

• 制导、导航与控制 • 上一篇    

基于CL-RRT与MPC的舰载机牵引系统路径规划

孙家玮1, 余明晖1,*, 杨大鹏2, 汤皓泉2, 卞大鹏3   

  1. 1. 华中科技大学人工智能与自动化学院, 湖北 武汉 430074
    2. 中国舰船研究设计中心, 湖北 武汉 430064
    3. 海军装备部驻武汉地区第二军事代表室, 湖北 武汉 430064
  • 收稿日期:2022-10-24 出版日期:2024-04-30 发布日期:2024-04-30
  • 通讯作者: 余明晖
  • 作者简介:孙家玮 (1998—), 男, 硕士研究生, 主要研究方向为舰载机的调度
    余明晖 (1971—), 男, 副教授, 博士, 主要研究方向为决策支持系统、系统优化
    杨大鹏 (1981—), 男, 高级工程师, 硕士, 主要研究方向为舰载机的出动回收能力建模、仿真与评估
    汤皓泉 (1989—), 男, 高级工程师, 本科, 主要研究方向为舰船航空保障
    卞大鹏 (1976—), 男, 工程师, 硕士, 主要研究方向为舰船航空保障

Path planning of carrier aircraft traction system based on CL-RRT and MPC

Jiawei SUN1, Minghui YU1,*, Dapeng YANG2, Haoquan TANG2, Dapeng BIAN3   

  1. 1. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
    2. China Ship Development and Design Center, Wuhan 430064, China
    3. The Second Military Representative Office of Naval Equipment Department in Wuhan, Wuhan 430064, China
  • Received:2022-10-24 Online:2024-04-30 Published:2024-04-30
  • Contact: Minghui YU

摘要:

针对舰载机在甲板狭小、复杂环境下的调运过程, 结合闭环快速随机搜索树(close loop rapidly exploring random trees, CL-RRT)和模型预测控制(model predictive control, MPC)提出一种舰载机牵引系统的路径规划算法。首先, 在CL-RRT中采用纯追踪器与线性二次型(linear quadratic, LQ)控制器得到系统的控制输入并向前仿真得到规划路径。其次, 将已得路径进行等比缩放与插值作为MPC的初始解。最后, 设置MPC的目标函数等并解得最终路径。展开自定义三个场景下的仿真实验, 通过与CL-RRT算法的实验结果进行比较, 验证本文算法的优越性。实验结果表明, 所提算法可有效解决因采样随机性带来解质量不佳的问题, 提升舰载机在甲板上的调运效率与安全性。

关键词: 舰载机牵引系统, 闭环快速随机搜索树, 模型预测控制, 路径规划

Abstract:

The transport process of carrier aircraft is difficult because the environment of deck is narrow and complex. A path planning algorithm for the carrier aircraft traction system is proposed combining close loop rapidly exploring random trees (CL-RRT) and model predictive control (MPC). Firstly, the pure pursuit controller and linear quadratic (LQ) controller are used in CL-RRT to obtain the control input of the system, and the planned path is obtained by forward simulation. Secondly, the obtained path is scaled and interpolated as the initial solution of MPC. Finally, the objective function and so on of MPC is set and the final path is solved. The simulation experiment of three customized scenarios is carried out to verify the superiority of the proposed algorithm by comparing with the experimental results of CL-RRT algorithm. Experimental results show that the proposed algorithm can effectively solve the problem of poor solution quality caused by randomness of sampling, and improve the efficiency and safety of carrier aircraft on deck.

Key words: carrier aircraft traction system, close loop rapidly exploring random trees (CL-RRT), model predictive control (MPC), path planning

中图分类号: