系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (5): 1734-1744.doi: 10.12305/j.issn.1001-506X.2024.05.26
• 制导、导航与控制 • 上一篇
赵新运, 于剑桥
收稿日期:
2023-05-24
出版日期:
2024-04-30
发布日期:
2024-04-30
通讯作者:
于剑桥
作者简介:
赵新运 (1998—), 男, 硕士研究生, 主要研究方向为飞行器总体设计、飞行力学与控制Xinyun ZHAO, Jianqiao YU
Received:
2023-05-24
Online:
2024-04-30
Published:
2024-04-30
Contact:
Jianqiao YU
摘要:
为大幅度提高导弹的超大角度机动能力, 提出一种新型迅捷弹箭多源力组合控制方法。首先通过在传统直接力/气动力复合控制敏捷导弹尾部加装一类柔性可控伞, 设计一种新型弹箭构型, 然后基于合理假设将柔性可控伞简化为作用在敏捷导弹尾部的可控柔性力, 并给出可控柔性力大小、方向、驱动机构动态响应特性的量化描述方法, 进而建立铅垂平面内引入可控柔性力的动力学模型, 最后针对强耦合、强不确定性、快时变性、强非线性的多输入多输出系统, 设计柔性力/直接力/气动力复合控制律, 实现了新型弹箭的迅捷转向。通过仿真验证了所提方法的合理性和有效性, 并与传统敏捷导弹进行仿真对比, 验证了所提方法有利于提高超大角度机动能力。
中图分类号:
赵新运, 于剑桥. 新型迅捷弹箭多源力组合控制方法[J]. 系统工程与电子技术, 2024, 46(5): 1734-1744.
Xinyun ZHAO, Jianqiao YU. Multi-source force combined control method for novel agile projectiles[J]. Systems Engineering and Electronics, 2024, 46(5): 1734-1744.
1 |
GONG X P , CHEN W C , CHEN Z Y . All-aspect guidance law for agile missiles based on deep reinforcement learning[J]. Aerospace Science and Technology, 2022, 127, 107677.
doi: 10.1016/j.ast.2022.107677 |
2 |
THUKRAL A , INNOCENTI M . A sliding mode missile pitch autopilot synthesis for high angle of attack maneuvering[J]. IEEE Trans.on Control Systems Technology, 1998, 6 (3): 359- 371.
doi: 10.1109/87.668037 |
3 |
毕永涛, 王宇航, 姚郁. 直/气复合控制导弹的模型预测和自抗扰姿态控制设计[J]. 宇航学报, 2015, 36 (12): 1373- 1383.
doi: 10.3873/j.issn.1000-1328.2015.12.005 |
BI Y T , WANG Y H , YAO Y . Attitude control design of missiles with dual control based on model predictive control and active disturbance rejection control[J]. Journal of Astronautics, 2015, 36 (12): 1373- 1383.
doi: 10.3873/j.issn.1000-1328.2015.12.005 |
|
4 |
MA Y Y , GUO J , TANG S J . High angle of attack command generation technique and tracking control for agile missiles[J]. Aerospace Science and Technology, 2015, 45, 324- 334.
doi: 10.1016/j.ast.2015.06.003 |
5 | 霍鑫, 彭继平, 马克茂, 等. 空空导弹敏捷转弯的分段线性滑模控制设计[J]. 系统工程与电子技术, 2017, 39 (10): 2278- 2284. |
HUO X , PENG J P , MA K M , et al. Piecewise linear sliding mode control design for agile turn of air-to-air missile[J]. Systems Engineering and Electronics, 2017, 39 (10): 2278- 2284. | |
6 |
GUO Y , GUO J H , LIU X , et al. Finite-time blended control for air-to-air missile with lateral thrusters and aerodynamic surfaces[J]. Aerospace Science and Technology, 2020, 97, 105638.
doi: 10.1016/j.ast.2019.105638 |
7 | 刘祥, 李爱军, 郭永, 等. 固定时间收敛的空空导弹直接力/气动力复合控制[J]. 哈尔滨工业大学学报, 2019, 51 (9): 29-34, 42. |
LIU X , LI A J , GUO Y , et al. Fixed-time convergence blended control for air-to-air missile with lateral thrusters and aerodynamic force[J]. Journal of Harbin Institute of Technology, 2019, 51 (9): 29-34, 42. | |
8 |
KIM Y , KIM B S . Pitch autopilot design for agile missiles with uncertain aerodynamic coefficients[J]. IEEE Trans.on Aerospace and Electronic Systems, 2013, 49 (2): 907- 914.
doi: 10.1109/TAES.2013.6494388 |
9 |
MAHMOOD A , KIM Y , PARK J . Robust H∞ autopilot design for agile missile with time-varying parameters[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (4): 3082- 3089.
doi: 10.1109/TAES.2014.130750 |
10 | 赵新运, 于剑桥. 导弹敏捷转弯段的新型非奇异终端滑模控制[J]. 宇航学报, 2022, 43 (4): 454- 464. |
ZHAO X Y , YU J Q . Novel non-singular terminal sliding mode control for missile's agile turn[J]. Journal of Astronautics, 2022, 43 (4): 454- 464. | |
11 | 李政, 于剑桥, 赵新运. 空空导弹敏捷转弯固定时间收敛滑模控制[J]. 航空学报, 2023, 44 (8): 327262. |
LI Z , YU J Q , ZHAO X Y . Fixed-time convergent sliding mode control for agile turn of air-to-air missiles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (8): 327262. | |
12 | 李健, 房冠辉, 吕智慧, 等. 天问一号火星探测器伞系减速分系统设计与验证[J]. 中国科学: 技术科学, 2022, 52 (2): 264- 277. |
LI J , FANG G H , LYU Z H , et al. Design and verification of parachute deceleration subsystem of Tianwen-1 Mars probe[J]. Scientia Sinica Technologica, 2022, 52 (2): 264- 277. | |
13 | 董捷, 饶炜, 孙泽洲, 等. 火星伞降段多体动力学特性分析与安全设计研究[J]. 中国科学: 技术科学, 2022, 52 (8): 1175- 1185. |
DONG J , RAO W , SUN Z Z , et al. Multibody dynamics characteristics analysis and safety design research of the Mars parachute descent process[J]. Scientia Sinica Technologica, 2022, 52 (8): 1175- 1185. | |
14 |
WHITE F M , WOLF D F . A theory of three-dimensional parachute dynamic stability[J]. Journal of Aircraft, 1968, 5 (1): 86- 92.
doi: 10.2514/3.43912 |
15 |
WOLF D F . Dynamic stability of a nonrigid parachute and payload system[J]. Journal of Aircraft, 1971, 8 (8): 603- 609.
doi: 10.2514/3.59145 |
16 |
DOHERR K F , SCHILLING H . Nine-degree-of-freedom simulation of rotating parachute systems[J]. Journal of Aircraft, 1992, 29 (5): 774- 781.
doi: 10.2514/3.46245 |
17 |
XING X J , FENG L , CHEN M P , et al. Modeling and research of a multi-stage parachute system for the booster recovery[J]. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 2023, 237 (5): 1135- 1157.
doi: 10.1177/09544100221118238 |
18 | COCKRELL D J, DOHERR K F. Preliminary consideration of parameter identification analysis from parachute aerodynamic flight test data[R]. San Diego: AIAA, 1981. |
19 |
EATON J A . Added mass and the dynamics stability of parachutes[J]. Journal of Aircraft, 1982, 19 (5): 414- 416.
doi: 10.2514/3.44766 |
20 |
EATON J A . Added fluid mass and the equations of motion of a parachute[J]. Aeronautical Quarterly, 1983, 34 (3): 226- 242.
doi: 10.1017/S0001925900009720 |
21 | GINN J M, CLARK I G, BRAUN R D. Parachute dynamics stability and the effects of apparent inertial[R]. Atlanta: AIAA, 2014. |
22 | CAO Y H , WEI N . Flight trajectory simulation and aerodynamic parameter identification of large-scale parachute[J]. International Journal of Aerospace Engineering, 2020, 2020, 5603169. |
23 |
GAO X L , ZHANG Q B , TANG Q G . Parachute dynamics and perturbation analysis of precision airdrop system[J]. Chinese Journal of Aeronautics, 2016, 29 (3): 596- 607.
doi: 10.1016/j.cja.2016.04.003 |
24 |
PHAM T D , NGUYEN A T , LE V D , et al. Trajectory analyses of uncontrolled circular parachutes in random spatial wind fields[J]. Journal of Mechanical Science and Technology, 2022, 36 (8): 3825- 3835.
doi: 10.1007/s12206-022-0706-5 |
25 | DOBROKHODOV V, YAKIMENKO O, JUNGE C. Six-degree-of-freedom model of a controlled circular parachute[R]. Monterey: AIAA, 2002. |
26 |
FIELDS T D , LACOMBE J C , WANG E L . Autonomous guidance of a circular parachute using descent rate control[J]. Journal of Guidance, Control, and Dynamics, 2012, 35 (4): 1367- 1370.
doi: 10.2514/1.55919 |
27 | FIELDS T D, BASORE N. Reversible control line reefing system for circular parachutes[R]. Daytona Beach: AIAA, 2015. |
28 |
FIELDS T D . Evaluation of control line reefing systems for circular parachute[J]. Journal of Aircraft, 2016, 53 (3): 855- 859.
doi: 10.2514/1.C033524 |
29 | 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2000. |
QIAN X F , LIN R X , ZHAO Y N . Missile flight dynamics[M]. Beijing: Beijing Institute of Technology Press, 2000. | |
30 |
HAN J Q . From PID to active disturbance rejection control[J]. IEEE Trans.on Industrial Electronics, 2009, 56 (3): 900- 906.
doi: 10.1109/TIE.2008.2011621 |
31 |
XIONG S F , WANG W H , LIU X D , et al. A novel extended state observer[J]. ISA Transactions, 2015, 58, 309- 317.
doi: 10.1016/j.isatra.2015.07.012 |
32 | UTKIN V I . Control systems of variable structure[M]. New York: Wiley, 1976. |
33 | 高为炳. 变结构控制的理论及设计方法[M]. 北京: 科学出版社, 1996. |
GAO W B . Theory and design method for variable sliding mode control[M]. Beijing: Science Press, 1996. | |
34 |
DING S H , MEI K Q , YU X H . Adaptive second-order sliding mode control: a Lyapunov approach[J]. IEEE Trans.on Automatic Control, 2022, 67 (10): 5392- 5399.
doi: 10.1109/TAC.2021.3115447 |
35 |
CAO X Q , GE Q X , ZHU J Q , et al. Improved sliding mode traction control combined sliding mode disturbance observer strategy for high-speed Maglev train[J]. IEEE Trans.on Power Electronics, 2023, 38 (1): 827- 838.
doi: 10.1109/TPEL.2022.3201614 |
36 |
HOU H Z , YU X H , FU Z . Sliding mode control of networked control systems: an auxiliary matrices-based approach[J]. IEEE Trans.on Automatic Control, 2022, 67 (7): 3574- 3581.
doi: 10.1109/TAC.2021.3103882 |
37 |
FENG Y , YU X H , MAN Z H . Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38 (12): 2159- 2167.
doi: 10.1016/S0005-1098(02)00147-4 |
38 | 梅红, 王勇. 快速收敛的机器人滑模变结构控制[J]. 信息与控制, 2009, 38 (5): 552- 557. |
MEI H , WANG Y . Fast convergent sliding mode variable structure control of robot[J]. Information and Control, 2009, 38 (5): 552- 557. |
[1] | 郑秋实, 许伟春, 赵明翰, 李乃星, 包旭馨. 可旋转翼式弹道修正组件滚转控制技术研究[J]. 系统工程与电子技术, 2024, 46(4): 1412-1421. |
[2] | 桂洋, 郑柏超, 高鹏. 基于NESO-LFDC的四旋翼无人机滑模姿态控制[J]. 系统工程与电子技术, 2024, 46(3): 1075-1083. |
[3] | 姜雨石, 陈旸, 高路, 蔡李根, 吕吉星. 重型运载火箭预设时间自适应控制[J]. 系统工程与电子技术, 2023, 45(8): 2570-2577. |
[4] | 李方俊, 王生捷, 李俊峰, 李浩, 崔臣君. 基于新型趋近率的含齿隙随动系统鲁棒控制[J]. 系统工程与电子技术, 2023, 45(4): 1177-1184. |
[5] | 郑建成, 曲智国, 谭贤四, 王京阳, 李陆军. 反临与反导预警探测特征比较[J]. 系统工程与电子技术, 2023, 45(2): 379-385. |
[6] | 宋波涛, 许广亮. 基于LSTM与1DCNN的导弹轨迹预测方法[J]. 系统工程与电子技术, 2023, 45(2): 504-512. |
[7] | 刘子超, 王江, 何绍溟. 基于深度学习的时间角度控制制导律[J]. 系统工程与电子技术, 2023, 45(11): 3579-3587. |
[8] | 高煜欣, 刘春生. 基于微分对策的非仿射导弹学习滑模制导[J]. 系统工程与电子技术, 2023, 45(11): 3616-3623. |
[9] | 罗瑞宁, 黄树彩, 赵岩, 张振. 子母导弹反无人机集群制导策略[J]. 系统工程与电子技术, 2023, 45(10): 3249-3258. |
[10] | 陆浩然, 郑伟, 常晓华. 基于鲁棒精确微分器的分数阶滑模制导律设计[J]. 系统工程与电子技术, 2023, 45(1): 175-183. |
[11] | 马子杰, 谢拥军. 体系作战下巡航导弹的动态隐身[J]. 系统工程与电子技术, 2022, 44(9): 2826-2831. |
[12] | 周梦平, 孟秀云, 刘俊辉. 大落角机动目标逆轨拦截最优滑模制导律设计[J]. 系统工程与电子技术, 2022, 44(9): 2886-2893. |
[13] | 吉瑞萍, 张程祎, 梁彦, 王跃东. 基于LSTM的弹道导弹主动段轨迹预报[J]. 系统工程与电子技术, 2022, 44(6): 1968-1976. |
[14] | 罗世彬, 李晓栋, 王忠森, 徐骋. 并联式运载器上升段广义超螺旋有限时间控制[J]. 系统工程与电子技术, 2022, 44(5): 1626-1635. |
[15] | 韦俊宝, 李海燕, 李静. 高超声速飞行器新型攻角约束反演控制[J]. 系统工程与电子技术, 2022, 44(4): 1310-1317. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||